Cargando…
Use of application containers and workflows for genomic data analysis
BACKGROUND: The rapid acquisition of biological data and development of computationally intensive analyses has led to a need for novel approaches to software deployment. In particular, the complexity of common analytic tools for genomics makes them difficult to deploy and decreases the reproducibili...
Autores principales: | Schulz, Wade L., Durant, Thomas J. S., Siddon, Alexa J., Torres, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5248400/ https://www.ncbi.nlm.nih.gov/pubmed/28163975 http://dx.doi.org/10.4103/2153-3539.197197 |
Ejemplares similares
-
metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data
por: Zafeiropoulos, Haris, et al.
Publicado: (2023) -
Unifying package managers, workflow engines, and containers: Computational reproducibility with BioNix
por: Bedő, Justin, et al.
Publicado: (2020) -
A workflow for simplified analysis of ATAC-cap-seq data in R
por: Shrestha, Ram Krishna, et al.
Publicado: (2018) -
A streamlined workflow for conversion, peer review, and publication of genomics metadata as omics data papers
por: Dimitrova, Mariya, et al.
Publicado: (2021) -
Datastorr: a workflow and package for delivering successive versions of 'evolving data' directly into R
por: Falster, Daniel S, et al.
Publicado: (2019)