Cargando…
DegreeCox – a network-based regularization method for survival analysis
BACKGROUND: Modeling survival oncological data has become a major challenge as the increase in the amount of molecular information nowadays available means that the number of features greatly exceeds the number of observations. One possible solution to cope with this dimensionality problem is the us...
Autores principales: | Veríssimo, André, Oliveira, Arlindo Limede, Sagot, Marie-France, Vinga, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249012/ https://www.ncbi.nlm.nih.gov/pubmed/28105908 http://dx.doi.org/10.1186/s12859-016-1310-4 |
Ejemplares similares
-
Kidney Cancer Biomarker Selection Using Regularized Survival Models
por: Peixoto, Carolina, et al.
Publicado: (2022) -
TCox: Correlation-Based Regularization Applied to Colorectal Cancer Survival Data
por: Peixoto, Carolina, et al.
Publicado: (2020) -
A comprehensive evaluation of binning methods to recover human gut microbial species from a non-redundant reference gene catalog
por: Borderes, Marianne, et al.
Publicado: (2021) -
Identification of influential observations in high-dimensional cancer survival data through the rank product test
por: Carrasquinha, Eunice, et al.
Publicado: (2018) -
Using Information Interaction to Discover Epistatic Effects in Complex Diseases
por: Anunciação, Orlando, et al.
Publicado: (2013)