Cargando…
Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction
BACKGROUND: MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still...
Autores principales: | Marques, Yuri Bento, de Paiva Oliveira, Alcione, Ribeiro Vasconcelos, Ana Tereza, Cerqueira, Fabio Ribeiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249014/ https://www.ncbi.nlm.nih.gov/pubmed/28105918 http://dx.doi.org/10.1186/s12859-016-1343-8 |
Ejemplares similares
-
Erratum to: Mirnacle: machine learning with SMOTE and random forest for improving selectivity in pre-miRNA ab initio prediction
por: Marques, Yuri Bento, et al.
Publicado: (2017) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm
por: Tan, Xiaopeng, et al.
Publicado: (2019) -
A fast ab-initio method for predicting miRNA precursors in genomes
por: Tempel, Sébastien, et al.
Publicado: (2012) -
Ab Initio Machine Learning in Chemical Compound Space
por: Huang, Bing, et al.
Publicado: (2021)