Cargando…
Integrating gene set analysis and nonlinear predictive modeling of disease phenotypes using a Bayesian multitask formulation
BACKGROUND: Identifying molecular signatures of disease phenotypes is studied using two mainstream approaches: (i) Predictive modeling methods such as linear classification and regression algorithms are used to find signatures predictive of phenotypes from genomic data, which may not be robust due t...
Autor principal: | Gönen, Mehmet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249028/ https://www.ncbi.nlm.nih.gov/pubmed/28105911 http://dx.doi.org/10.1186/s12859-016-1311-3 |
Ejemplares similares
-
Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
por: Gönen, Mehmet, et al.
Publicado: (2014) -
Identifying Tissue- and Cohort-Specific RNA Regulatory Modules in Cancer Cells Using Multitask Learning
por: Mokhtaridoost, Milad, et al.
Publicado: (2022) -
A Bayesian Assessment of Real-World Behavior During Multitasking
por: Bergmann, Jeroen H.M., et al.
Publicado: (2017) -
Task Integration Facilitates Multitasking
por: de Oliveira, Rita F., et al.
Publicado: (2017) -
Bayesian multitask learning for medicine recommendation based on online patient reviews
por: Cheng, Yichen, et al.
Publicado: (2023)