Cargando…

Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance

BACKGROUND: Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic p...

Descripción completa

Detalles Bibliográficos
Autores principales: Bulakhov, Alexander G., Volkov, Pavel V., Rozhkova, Aleksandra M., Gusakov, Alexander V., Nemashkalov, Vitaly A., Satrutdinov, Aidar D., Sinitsyn, Arkady P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249098/
https://www.ncbi.nlm.nih.gov/pubmed/28107425
http://dx.doi.org/10.1371/journal.pone.0170404
_version_ 1782497391154298880
author Bulakhov, Alexander G.
Volkov, Pavel V.
Rozhkova, Aleksandra M.
Gusakov, Alexander V.
Nemashkalov, Vitaly A.
Satrutdinov, Aidar D.
Sinitsyn, Arkady P.
author_facet Bulakhov, Alexander G.
Volkov, Pavel V.
Rozhkova, Aleksandra M.
Gusakov, Alexander V.
Nemashkalov, Vitaly A.
Satrutdinov, Aidar D.
Sinitsyn, Arkady P.
author_sort Bulakhov, Alexander G.
collection PubMed
description BACKGROUND: Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO) displaying a synergism with cellulases. RESULTS: Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL), and eglIV, encoding LPMO (formerly endoglucanase IV) from Trichoderma reesei (TrLPMO), were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3) varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples). The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10–43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1. CONCLUSIONS: The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable to express both heterologous enzymes simultaneously.
format Online
Article
Text
id pubmed-5249098
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-52490982017-02-06 Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance Bulakhov, Alexander G. Volkov, Pavel V. Rozhkova, Aleksandra M. Gusakov, Alexander V. Nemashkalov, Vitaly A. Satrutdinov, Aidar D. Sinitsyn, Arkady P. PLoS One Research Article BACKGROUND: Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO) displaying a synergism with cellulases. RESULTS: Genes bglI, encoding β-glucosidase from Aspergillus niger (AnBGL), and eglIV, encoding LPMO (formerly endoglucanase IV) from Trichoderma reesei (TrLPMO), were cloned and expressed by P. verruculosum B1-537 strain under the control of the inducible gla1 gene promoter. Content of the heterologous AnBGL in the secreted multienzyme cocktails (hBGL1, hBGL2 and hBGL3) varied from 4 to 10% of the total protein, while the content of TrLPMO in the hLPMO sample was ~3%. The glucose yields in 48-h hydrolysis of Avicel and milled aspen wood by the hBGL1, hBGL2 and hBGL3 preparations increased by up to 99 and 80%, respectively, relative to control enzyme preparations without the heterologous AnBGL (at protein loading 5 mg/g substrate for all enzyme samples). The heterologous TrLPMO in the hLPMO preparation boosted the conversion of the lignocellulosic substrate by 10–43%; however, in hydrolysis of Avicel the hLPMO sample was less effective than the control preparations. The highest product yield in hydrolysis of aspen wood was obtained when the hBGL2 and hLPMO preparations were used at the ratio 1:1. CONCLUSIONS: The enzyme preparations produced by recombinant P. verruculosum strains, expressing the heterologous AnBGL or TrLPMO under the control of the gla1 gene promoter in a starch-containing medium, proved to be more effective in hydrolysis of a lignocellulosic substrate than control enzyme preparations without the heterologous enzymes. The enzyme composition containing both AnBGL and TrLPMO demonstrated the highest performance in lignocellulose hydrolysis, providing a background for developing a fungal strain capable to express both heterologous enzymes simultaneously. Public Library of Science 2017-01-20 /pmc/articles/PMC5249098/ /pubmed/28107425 http://dx.doi.org/10.1371/journal.pone.0170404 Text en © 2017 Bulakhov et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Bulakhov, Alexander G.
Volkov, Pavel V.
Rozhkova, Aleksandra M.
Gusakov, Alexander V.
Nemashkalov, Vitaly A.
Satrutdinov, Aidar D.
Sinitsyn, Arkady P.
Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
title Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
title_full Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
title_fullStr Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
title_full_unstemmed Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
title_short Using an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
title_sort using an inducible promoter of a gene encoding penicillium verruculosum glucoamylase for production of enzyme preparations with enhanced cellulase performance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5249098/
https://www.ncbi.nlm.nih.gov/pubmed/28107425
http://dx.doi.org/10.1371/journal.pone.0170404
work_keys_str_mv AT bulakhovalexanderg usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance
AT volkovpavelv usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance
AT rozhkovaaleksandram usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance
AT gusakovalexanderv usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance
AT nemashkalovvitalya usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance
AT satrutdinovaidard usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance
AT sinitsynarkadyp usinganinduciblepromoterofageneencodingpenicilliumverruculosumglucoamylaseforproductionofenzymepreparationswithenhancedcellulaseperformance