Cargando…
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
Single-cell RNA-Sequencing (scRNA-Seq) is a fast-evolving technology that enables the understanding of biological processes at an unprecedentedly high resolution. However, well-suited bioinformatics tools to analyze the data generated from this new technology are still lacking. Here we investigate t...
Autores principales: | Zhu, Xun, Ching, Travers, Pan, Xinghua, Weissman, Sherman M., Garmire, Lana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5251935/ https://www.ncbi.nlm.nih.gov/pubmed/28133571 http://dx.doi.org/10.7717/peerj.2888 |
Ejemplares similares
-
Power analysis and sample size estimation for RNA-Seq differential expression
por: Ching, Travers, et al.
Publicado: (2014) -
Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
por: Poirion, Olivier, et al.
Publicado: (2018) -
Getting the most out of RNA-seq data analysis
por: Khang, Tsung Fei, et al.
Publicado: (2015) -
SingleCAnalyzer: Interactive Analysis of Single Cell RNA-Seq Data on the Cloud
por: Prieto, Carlos, et al.
Publicado: (2022) -
BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
por: Dimitrov, Daniel, et al.
Publicado: (2020)