Cargando…
Post‐translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination
The plant phytohormone abscisic acid (ABA) plays significant roles in integrating environmental signals with embryogenesis, germination, seedling establishment, the floral transition and the adaptation of plants to stressful environments by modulating stomatal movement and stress‐responsive gene exp...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253474/ https://www.ncbi.nlm.nih.gov/pubmed/27767245 http://dx.doi.org/10.1111/pbi.12652 |
Sumario: | The plant phytohormone abscisic acid (ABA) plays significant roles in integrating environmental signals with embryogenesis, germination, seedling establishment, the floral transition and the adaptation of plants to stressful environments by modulating stomatal movement and stress‐responsive gene expression. ABA signalling consists of ABA perception, signal transduction and ABA‐induced responses. ABA receptors such as members of the PYR/PYL family, group A type 2C protein phosphatases (as negative regulators), SnRK2 protein kinases (as positive regulators), bZIP transcription factors and ion channels are key components of ABA signalling. Post‐translational modifications, including dephosphorylation, phosphorylation and ubiquitination, play important roles in regulating ABA signalling. In this review, we focus on the roles of post‐translational modifications in ABA signalling. The studies presented provide a detailed picture of the ABA signalling network. |
---|