Cargando…

Predicting patient ‘cost blooms’ in Denmark: a longitudinal population-based study

OBJECTIVES: To compare the ability of standard versus enhanced models to predict future high-cost patients, especially those who move from a lower to the upper decile of per capita healthcare expenditures within 1 year—that is, ‘cost bloomers’. DESIGN: We developed alternative models to predict bein...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamang, Suzanne, Milstein, Arnold, Sørensen, Henrik Toft, Pedersen, Lars, Mackey, Lester, Betterton, Jean-Raymond, Janson, Lucas, Shah, Nigam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253526/
https://www.ncbi.nlm.nih.gov/pubmed/28077408
http://dx.doi.org/10.1136/bmjopen-2016-011580
Descripción
Sumario:OBJECTIVES: To compare the ability of standard versus enhanced models to predict future high-cost patients, especially those who move from a lower to the upper decile of per capita healthcare expenditures within 1 year—that is, ‘cost bloomers’. DESIGN: We developed alternative models to predict being in the upper decile of healthcare expenditures in year 2 of a sample, based on data from year 1. Our 6 alternative models ranged from a standard cost-prediction model with 4 variables (ie, traditional model features), to our largest enhanced model with 1053 non-traditional model features. To quantify any increases in predictive power that enhanced models achieved over standard tools, we compared the prospective predictive performance of each model. PARTICIPANTS AND SETTING: We used the population of Western Denmark between 2004 and 2011 (2 146 801 individuals) to predict future high-cost patients and characterise high-cost patient subgroups. Using the most recent 2-year period (2010–2011) for model evaluation, our whole-population model used a cohort of 1 557 950 individuals with a full year of active residency in year 1 (2010). Our cost-bloom model excluded the 155 795 individuals who were already high cost at the population level in year 1, resulting in 1 402 155 individuals for prediction of cost bloomers in year 2 (2011). PRIMARY OUTCOME MEASURES: Using unseen data from a future year, we evaluated each model's prospective predictive performance by calculating the ratio of predicted high-cost patient expenditures to the actual high-cost patient expenditures in Year 2—that is, cost capture. RESULTS: Our best enhanced model achieved a 21% and 30% improvement in cost capture over a standard diagnosis-based model for predicting population-level high-cost patients and cost bloomers, respectively. CONCLUSIONS: In combination with modern statistical learning methods for analysing large data sets, models enhanced with a large and diverse set of features led to better performance—especially for predicting future cost bloomers.