Cargando…
Predicting patient ‘cost blooms’ in Denmark: a longitudinal population-based study
OBJECTIVES: To compare the ability of standard versus enhanced models to predict future high-cost patients, especially those who move from a lower to the upper decile of per capita healthcare expenditures within 1 year—that is, ‘cost bloomers’. DESIGN: We developed alternative models to predict bein...
Autores principales: | Tamang, Suzanne, Milstein, Arnold, Sørensen, Henrik Toft, Pedersen, Lars, Mackey, Lester, Betterton, Jean-Raymond, Janson, Lucas, Shah, Nigam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253526/ https://www.ncbi.nlm.nih.gov/pubmed/28077408 http://dx.doi.org/10.1136/bmjopen-2016-011580 |
Ejemplares similares
-
Security Approaches in Using Tablet Computers for Primary Data Collection in Clinical Research
por: Wilcox, Adam B., et al.
Publicado: (2013) -
VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions
por: Freeman, Peter J., et al.
Publicado: (2017) -
PatientMatcher: A customizable Python‐based open‐source tool for matching undiagnosed rare disease patients via the Matchmaker Exchange network
por: Rasi, Chiara, et al.
Publicado: (2022) -
Developing a Communitywide Electronic Health Record Disease Registry in Primary Care Practices: Lessons Learned from the Western New York Beacon Community
por: Heider, Arvela R., et al.
Publicado: (2014) -
hgvs: A Python package for manipulating sequence variants using HGVS nomenclature: 2018 Update
por: Wang, Meng, et al.
Publicado: (2018)