Cargando…

Quantum Monte Carlo simulation of a particular class of non-stoquastic Hamiltonians in quantum annealing

Quantum annealing is a generic solver of the optimization problem that uses fictitious quantum fluctuation. Its simulation in classical computing is often performed using the quantum Monte Carlo simulation via the Suzuki–Trotter decomposition. However, the negative sign problem sometimes emerges in...

Descripción completa

Detalles Bibliográficos
Autor principal: Ohzeki, Masayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253731/
https://www.ncbi.nlm.nih.gov/pubmed/28112244
http://dx.doi.org/10.1038/srep41186
Descripción
Sumario:Quantum annealing is a generic solver of the optimization problem that uses fictitious quantum fluctuation. Its simulation in classical computing is often performed using the quantum Monte Carlo simulation via the Suzuki–Trotter decomposition. However, the negative sign problem sometimes emerges in the simulation of quantum annealing with an elaborate driver Hamiltonian, since it belongs to a class of non-stoquastic Hamiltonians. In the present study, we propose an alternative way to avoid the negative sign problem involved in a particular class of the non-stoquastic Hamiltonians. To check the validity of the method, we demonstrate our method by applying it to a simple problem that includes the anti-ferromagnetic XX interaction, which is a typical instance of the non-stoquastic Hamiltonians.