Cargando…

Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum

Neutron stars and black holes are the astrophysical systems with the strongest gravitational fields in the universe. In this article, I review the prospect of using observations of such compact objects to probe some of the most intriguing general relativistic predictions in the strong-field regime:...

Descripción completa

Detalles Bibliográficos
Autor principal: Psaltis, Dimitrios
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253923/
https://www.ncbi.nlm.nih.gov/pubmed/28163608
http://dx.doi.org/10.12942/lrr-2008-9
Descripción
Sumario:Neutron stars and black holes are the astrophysical systems with the strongest gravitational fields in the universe. In this article, I review the prospect of using observations of such compact objects to probe some of the most intriguing general relativistic predictions in the strong-field regime: the absence of stable circular orbits near a compact object and the presence of event horizons around black-hole singularities. I discuss the need for a theoretical framework, within which future experiments will provide detailed, quantitative tests of gravity theories. Finally, I summarize the constraints imposed by current observations of neutron stars on potential deviations from general relativity.