Cargando…
Machine Learning and Data Mining Methods in Diabetes Research
The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in bio...
Autores principales: | Kavakiotis, Ioannis, Tsave, Olga, Salifoglou, Athanasios, Maglaveras, Nicos, Vlahavas, Ioannis, Chouvarda, Ioanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5257026/ https://www.ncbi.nlm.nih.gov/pubmed/28138367 http://dx.doi.org/10.1016/j.csbj.2016.12.005 |
Ejemplares similares
-
Integrating multiple immunogenetic data sources for feature extraction and mining somatic hypermutation patterns: the case of “towards analysis” in chronic lymphocytic leukaemia
por: Kavakiotis, Ioannis, et al.
Publicado: (2016) -
Chromium Flavonoid Complexation in an Antioxidant Capacity Role
por: Matsia, Sevasti, et al.
Publicado: (2022) -
Understanding the Beat-to-Beat Variations of P-Waves Morphologies in AF Patients During Sinus Rhythm: A Scoping Review of the Atrial Simulation Studies
por: Filos, Dimitrios, et al.
Publicado: (2019) -
IRProfiler – a software toolbox for high throughput immune receptor profiling
por: Maramis, Christos, et al.
Publicado: (2018) -
Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air
por: Frydas, Ilias S., et al.
Publicado: (2020)