Cargando…

Global stability of a class of futile cycles

In this paper, we prove the global asymptotic stability of a class of mass action futile cycle networks which includes a model of processive multisite phosphorylation networks. The proof consists of two parts. In the first part, we prove that there is a unique equilibrium in every positive compatibi...

Descripción completa

Detalles Bibliográficos
Autor principal: Rao, Shodhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258802/
https://www.ncbi.nlm.nih.gov/pubmed/27356890
http://dx.doi.org/10.1007/s00285-016-1039-8
Descripción
Sumario:In this paper, we prove the global asymptotic stability of a class of mass action futile cycle networks which includes a model of processive multisite phosphorylation networks. The proof consists of two parts. In the first part, we prove that there is a unique equilibrium in every positive compatibility class. In the second part, we make use of a piecewise linear in rates Lyapunov function in order to prove the global asymptotic stability of the unique equilibrium corresponding to a given initial concentration vector. The main novelty of the paper is the use of a simple algebraic approach based on the intermediate value property of continuous functions in order to prove the uniqueness of equilibrium in every positive compatibility class.