Cargando…
Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis
Cation/proton antiporter 1 (CPA1) genes encode cellular Na(+)/H(+) exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgeni...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258863/ https://www.ncbi.nlm.nih.gov/pubmed/27383431 http://dx.doi.org/10.1111/pbi.12599 |
_version_ | 1782499099826716672 |
---|---|
author | Ma, Yuan‐Chun Augé, Robert M. Dong, Chao Cheng, Zong‐Ming (Max) |
author_facet | Ma, Yuan‐Chun Augé, Robert M. Dong, Chao Cheng, Zong‐Ming (Max) |
author_sort | Ma, Yuan‐Chun |
collection | PubMed |
description | Cation/proton antiporter 1 (CPA1) genes encode cellular Na(+)/H(+) exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over‐expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta‐analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K(+), root K(+)/Na(+), total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1‐induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance. |
format | Online Article Text |
id | pubmed-5258863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52588632017-02-03 Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis Ma, Yuan‐Chun Augé, Robert M. Dong, Chao Cheng, Zong‐Ming (Max) Plant Biotechnol J Research Articles Cation/proton antiporter 1 (CPA1) genes encode cellular Na(+)/H(+) exchanger proteins, which act to adjust ionic balance. Overexpression of CPA1s can improve plant performance under salt stress. However, the diversified roles of the CPA1 family and the various parameters used in evaluating transgenic plants over‐expressing CPA1s make it challenging to assess the complex functions of CPA1s and their physiological mechanisms in salt tolerance. Using meta‐analysis, we determined how overexpression of CPA1s has influenced several plant characteristics involved in response and resilience to NaCl stress. We also evaluated experimental variables that favour or reduce CPA1 effects in transgenic plants. Viewed across studies, overexpression of CPA1s has increased the magnitude of 10 of the 19 plant characteristics examined, by 25% or more. Among the ten moderating variables, several had substantial impacts on the extent of CPA1 influence: type of culture media, donor and recipient type and genus, and gene family. Genes from monocotyledonous plants stimulated root K(+), root K(+)/Na(+), total chlorophyll, total dry weight and root length much more than genes from dicotyledonous species. Genes transformed to or from Arabidopsis have led to smaller CPA1‐induced increases in plant characteristics than genes transferred to or from other genera. Heterogeneous expression of CPA1s led to greater increases in leaf chlorophyll and root length than homologous expression. These findings should help guide future investigations into the function of CPA1s in plant salt tolerance and the use of genetic engineering for breeding of resistance. John Wiley and Sons Inc. 2016-09-06 2017-02 /pmc/articles/PMC5258863/ /pubmed/27383431 http://dx.doi.org/10.1111/pbi.12599 Text en © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Ma, Yuan‐Chun Augé, Robert M. Dong, Chao Cheng, Zong‐Ming (Max) Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
title | Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
title_full | Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
title_fullStr | Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
title_full_unstemmed | Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
title_short | Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
title_sort | increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta‐analysis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5258863/ https://www.ncbi.nlm.nih.gov/pubmed/27383431 http://dx.doi.org/10.1111/pbi.12599 |
work_keys_str_mv | AT mayuanchun increasedsalttolerancewithoverexpressionofcationprotonantiporter1genesametaanalysis AT augerobertm increasedsalttolerancewithoverexpressionofcationprotonantiporter1genesametaanalysis AT dongchao increasedsalttolerancewithoverexpressionofcationprotonantiporter1genesametaanalysis AT chengzongmingmax increasedsalttolerancewithoverexpressionofcationprotonantiporter1genesametaanalysis |