Cargando…

Fundamental mechanism for all-optical helicity-dependent switching of magnetization

Switching magnetizations with femtosecond circularly polarized lasers may have revolutionary impacts on magnetic data storage and relevant applications. Achievements in ferrimagnetic and ferromagnetic materials of various structures strongly imply a general phenomenon of fundamental atom-laser inter...

Descripción completa

Detalles Bibliográficos
Autor principal: Chen, Xiang-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259757/
https://www.ncbi.nlm.nih.gov/pubmed/28117460
http://dx.doi.org/10.1038/srep41294
Descripción
Sumario:Switching magnetizations with femtosecond circularly polarized lasers may have revolutionary impacts on magnetic data storage and relevant applications. Achievements in ferrimagnetic and ferromagnetic materials of various structures strongly imply a general phenomenon of fundamental atom-laser interaction. Rotating an atom’s wave function with the rotating electric field of a circularly polarized laser, I show the quantum mechanics for the atom is equivalent to that in a static electric field of the same magnitude and a tremendous static magnetic field which interacts with the atom in somewhat different ways. When some conditions are satisfied, transitions of atoms in these two crossed effective fields lead to a highly nonequilibrium state with orbital magnetic moments inclining to the effective magnetic field. The switching finally completes after the pulse duration via relaxation.