Cargando…

Treatment effects of lysozyme-shelled microbubbles and ultrasound in inflammatory skin disease

Acne vulgaris is the most common skin disorder, and is caused by Propionibacterium acnes (P. acnes) and can induce inflammation. Antibiotic therapy often needs to be administered for long durations in acne therapy, which results in extensive antibiotic exposure. The present study investigated a new...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Ai-Ho, Hung, Chi-Ray, Lin, Chieh-Fu, Lin, Yi-Chun, Chen, Hang-Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259758/
https://www.ncbi.nlm.nih.gov/pubmed/28117399
http://dx.doi.org/10.1038/srep41325
Descripción
Sumario:Acne vulgaris is the most common skin disorder, and is caused by Propionibacterium acnes (P. acnes) and can induce inflammation. Antibiotic therapy often needs to be administered for long durations in acne therapy, which results in extensive antibiotic exposure. The present study investigated a new treatment model for evaluating the antibacterial effects of lysozyme (LY)-shelled microbubbles (MBs) and ultrasound (US)-mediated LY-shelled MBs cavitation against P. acnes both in vitro and in vivo, with the aims of reducing the dose and treatment duration and improving the prognosis of acne vulgaris. In terms of the in vitro treatment efficacy, the growth of P. acnes was inhibited by 86.08 ± 2.99% in the LY-shelled MBs group and by 57.74 ± 3.09% in the LY solution group. For US power densities of 1, 2, and 3 W/cm(2) in the LY-shelled MBs group, the growth of P. acnes was inhibited by 95.79 ± 3.30%, 97.99 ± 1.16%, and 98.69 ± 1.13%, respectively. The in vivo results showed that the recovery rate on day 13 was higher in the US group with LY-shelled MBs (97.8 ± 19.8%) than in the LY-shelled MBs group (90.3 ± 23.3%). Our results show that combined treatments of US and LY-shelled MBs can significantly reduce the treatment duration and inhibit P.-acnes-induced inflammatory skin diseases.