Cargando…
GSAR: Bioconductor package for Gene Set analysis in R
BACKGROUND: Gene set analysis (in a form of functionally related genes or pathways) has become the method of choice for analyzing omics data in general and gene expression data in particular. There are many statistical methods that either summarize gene-level statistics for a gene set or apply a mul...
Autores principales: | Rahmatallah, Yasir, Zybailov, Boris, Emmert-Streib, Frank, Glazko, Galina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259853/ https://www.ncbi.nlm.nih.gov/pubmed/28118818 http://dx.doi.org/10.1186/s12859-017-1482-6 |
Ejemplares similares
-
Proteome-transcriptome alignment of molecular portraits achieved by self-contained gene set analysis: Consensus colon cancer subtypes case study
por: Glazko, Galina, et al.
Publicado: (2019) -
Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
Comparative evaluation of gene set analysis approaches for RNA-Seq data
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
por: Rahmatallah, Yasir, et al.
Publicado: (2016) -
ideal: an R/Bioconductor package for interactive differential expression analysis
por: Marini, Federico, et al.
Publicado: (2020)