Cargando…
Drug-target interaction prediction via class imbalance-aware ensemble learning
BACKGROUND: Multiple computational methods for predicting drug-target interactions have been developed to facilitate the drug discovery process. These methods use available data on known drug-target interactions to train classifiers with the purpose of predicting new undiscovered interactions. Howev...
Autores principales: | Ezzat, Ali, Wu, Min, Li, Xiao-Li, Kwoh, Chee-Keong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259867/ https://www.ncbi.nlm.nih.gov/pubmed/28155697 http://dx.doi.org/10.1186/s12859-016-1377-y |
Ejemplares similares
-
Ensemble Positive Unlabeled Learning for Disease Gene Identification
por: Yang, Peng, et al.
Publicado: (2014) -
Class similarity network for coding and long non-coding RNA classification
por: Zhang, Yu, et al.
Publicado: (2021) -
A Dynamic Ensemble Framework for Mining Textual Streams with Class Imbalance
por: Song, Ge, et al.
Publicado: (2014) -
Solving the class imbalance problem using ensemble algorithm: application of screening for aortic dissection
por: Liu, Lijue, et al.
Publicado: (2022) -
Class imbalance learning with Bayesian optimization applied in drug discovery
por: Guan, Shenmin, et al.
Publicado: (2022)