Cargando…
Single-cell epigenomic variability reveals functional cancer heterogeneity
BACKGROUND: Cell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to detect and assess functionally. RESULTS: We develop a strategy to bri...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259890/ https://www.ncbi.nlm.nih.gov/pubmed/28118844 http://dx.doi.org/10.1186/s13059-016-1133-7 |
_version_ | 1782499296555302912 |
---|---|
author | Litzenburger, Ulrike M. Buenrostro, Jason D. Wu, Beijing Shen, Ying Sheffield, Nathan C. Kathiria, Arwa Greenleaf, William J. Chang, Howard Y. |
author_facet | Litzenburger, Ulrike M. Buenrostro, Jason D. Wu, Beijing Shen, Ying Sheffield, Nathan C. Kathiria, Arwa Greenleaf, William J. Chang, Howard Y. |
author_sort | Litzenburger, Ulrike M. |
collection | PubMed |
description | BACKGROUND: Cell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to detect and assess functionally. RESULTS: We develop a strategy to bridge the gap between measurement and function in single-cell epigenomics. Using single-cell chromatin accessibility and RNA-seq data in K562 leukemic cells, we identify the cell surface marker CD24 as co-varying with chromatin accessibility changes linked to GATA transcription factors in single cells. Fluorescence-activated cell sorting of CD24 high versus low cells prospectively isolated GATA1 and GATA2 high versus low cells. GATA high versus low cells express differential gene regulatory networks, differential sensitivity to the drug imatinib mesylate, and differential self-renewal capacity. Lineage tracing experiments show that GATA/CD24hi cells have the capability to rapidly reconstitute the heterogeneity within the entire starting population, suggesting that GATA expression levels drive a phenotypically relevant source of epigenomic plasticity. CONCLUSION: Single-cell chromatin accessibility can guide prospective characterization of cancer heterogeneity. Epigenomic subpopulations in cancer impact drug sensitivity and the clonal dynamics of cancer evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1133-7) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5259890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-52598902017-01-26 Single-cell epigenomic variability reveals functional cancer heterogeneity Litzenburger, Ulrike M. Buenrostro, Jason D. Wu, Beijing Shen, Ying Sheffield, Nathan C. Kathiria, Arwa Greenleaf, William J. Chang, Howard Y. Genome Biol Research BACKGROUND: Cell-to-cell heterogeneity is a major driver of cancer evolution, progression, and emergence of drug resistance. Epigenomic variation at the single-cell level can rapidly create cancer heterogeneity but is difficult to detect and assess functionally. RESULTS: We develop a strategy to bridge the gap between measurement and function in single-cell epigenomics. Using single-cell chromatin accessibility and RNA-seq data in K562 leukemic cells, we identify the cell surface marker CD24 as co-varying with chromatin accessibility changes linked to GATA transcription factors in single cells. Fluorescence-activated cell sorting of CD24 high versus low cells prospectively isolated GATA1 and GATA2 high versus low cells. GATA high versus low cells express differential gene regulatory networks, differential sensitivity to the drug imatinib mesylate, and differential self-renewal capacity. Lineage tracing experiments show that GATA/CD24hi cells have the capability to rapidly reconstitute the heterogeneity within the entire starting population, suggesting that GATA expression levels drive a phenotypically relevant source of epigenomic plasticity. CONCLUSION: Single-cell chromatin accessibility can guide prospective characterization of cancer heterogeneity. Epigenomic subpopulations in cancer impact drug sensitivity and the clonal dynamics of cancer evolution. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-1133-7) contains supplementary material, which is available to authorized users. BioMed Central 2017-01-24 /pmc/articles/PMC5259890/ /pubmed/28118844 http://dx.doi.org/10.1186/s13059-016-1133-7 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Litzenburger, Ulrike M. Buenrostro, Jason D. Wu, Beijing Shen, Ying Sheffield, Nathan C. Kathiria, Arwa Greenleaf, William J. Chang, Howard Y. Single-cell epigenomic variability reveals functional cancer heterogeneity |
title | Single-cell epigenomic variability reveals functional cancer heterogeneity |
title_full | Single-cell epigenomic variability reveals functional cancer heterogeneity |
title_fullStr | Single-cell epigenomic variability reveals functional cancer heterogeneity |
title_full_unstemmed | Single-cell epigenomic variability reveals functional cancer heterogeneity |
title_short | Single-cell epigenomic variability reveals functional cancer heterogeneity |
title_sort | single-cell epigenomic variability reveals functional cancer heterogeneity |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259890/ https://www.ncbi.nlm.nih.gov/pubmed/28118844 http://dx.doi.org/10.1186/s13059-016-1133-7 |
work_keys_str_mv | AT litzenburgerulrikem singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT buenrostrojasond singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT wubeijing singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT shenying singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT sheffieldnathanc singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT kathiriaarwa singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT greenleafwilliamj singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity AT changhowardy singlecellepigenomicvariabilityrevealsfunctionalcancerheterogeneity |