Cargando…
A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data
BACKGROUND: The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate the complex biology of a heterogeneous population of cells, one at a time....
Autores principales: | Hu, Yongli, Hase, Takeshi, Li, Hui Peng, Prabhakar, Shyam, Kitano, Hiroaki, Ng, See Kiong, Ghosh, Samik, Wee, Lawrence Jin Kiat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5260093/ https://www.ncbi.nlm.nih.gov/pubmed/28155657 http://dx.doi.org/10.1186/s12864-016-3317-7 |
Ejemplares similares
-
Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks
por: Hase, Takeshi, et al.
Publicado: (2013) -
Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology
por: Hsin, Kun-Yi, et al.
Publicado: (2013) -
Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease
por: Tsuji, Shingo, et al.
Publicado: (2021) -
Payao: a community platform for SBML pathway model curation
por: Matsuoka, Yukiko, et al.
Publicado: (2010) -
Toward an integrated software platform for systems pharmacology
por: Ghosh, Samik, et al.
Publicado: (2013)