Cargando…

Genome-wide microarray analysis of TGFβ signaling in the Drosophila brain

BACKGROUND: Members of TGFβ superfamily are found to play important roles in many cellular processes, such as proliferation, differentiation, development, apoptosis, and cancer. In Drosophila, there are seven ligands that function through combinations of three type I receptors and two type II recept...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Maocheng, Nelson, Don, Funakoshi, Yoko, Padgett, Richard W
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC526378/
https://www.ncbi.nlm.nih.gov/pubmed/15473904
http://dx.doi.org/10.1186/1471-213X-4-14
Descripción
Sumario:BACKGROUND: Members of TGFβ superfamily are found to play important roles in many cellular processes, such as proliferation, differentiation, development, apoptosis, and cancer. In Drosophila, there are seven ligands that function through combinations of three type I receptors and two type II receptors. These signals can be roughly grouped into two major TGFβ pathways, the dpp/BMP and activin pathways, which signal primarily through thick veins (tkv) and baboon (babo). Few downstream targets are known for either pathway, especially targets expressed in the Drosophila brain. RESULTS: tkv and babo both affect the growth of tissues, but have varying effects on patterning. We have identified targets for the tkv and babo pathways by employing microarray techniques using activated forms of the receptors expressed in the brain. In these experiments, we compare the similarities of target genes of these two pathways in the brain. About 500 of 13,500 examined genes changed expression at 95% confidence level (P < 0.05). Twenty-seven genes are co-regulated 1.5 fold by both the tkv and babo pathways. These regulated genes cluster into various functional groups such as DNA/RNA binding, signal transducers, enzymes, transcription regulators, and neuronal regulators. RNAi knockdown experiments of homologs of several of these genes show abnormal growth regulation, suggesting these genes may execute the growth properties of TGFβ. CONCLUSIONS: Our genomic-wide microarray analysis has revealed common targets for the tkv and babo pathways and provided new insights into downstream effectors of two distinct TGFβ like pathways. Many of these genes are novel and several genes are implicated in growth control. Among the genes regulated by both pathways is ultraspiracle, which further connects TGFβ with neuronal remodeling.