Cargando…
High‐dose wogonin exacerbates DSS‐induced colitis by up‐regulating effector T cell function and inhibiting Treg cell
Wogonin exerts anti‐tumour activities via multiple mechanisms. We have identified that high‐dose wogonin (50 or 100 mg/kg) could inhibit the growth of transplanted tumours by directly inducing tumour apoptosis and promoting DC, T and NK cell recruitment into tumour tissues to enhance immune surveill...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264153/ https://www.ncbi.nlm.nih.gov/pubmed/27641629 http://dx.doi.org/10.1111/jcmm.12964 |
Sumario: | Wogonin exerts anti‐tumour activities via multiple mechanisms. We have identified that high‐dose wogonin (50 or 100 mg/kg) could inhibit the growth of transplanted tumours by directly inducing tumour apoptosis and promoting DC, T and NK cell recruitment into tumour tissues to enhance immune surveillance. However, wogonin (20–50 μM) ex vivo prevents inflammation by inhibiting NF‐κB and Erk signalling of macrophages and epithelial cells. It is elusive whether high‐dose wogonin promotes or prevents inflammation. To investigate the effects of high‐dose wogonin on murine colitis induced by dextran sodium sulphate (DSS), mice were co‐treated with DSS and various doses of wogonin. Intraperitoneal administration of wogonin (100 mg/kg) exacerbated DSS‐induced murine colitis. More CD4(+) CD44(+) and CD8(+) CD44(+) cells were located in the inflamed colons in the wogonin (100 mg/kg) treatment group than in the other groups. Frequencies of CD4(+) CD25(+) CD127(−) and CD4(+) CD25(+) Foxp3(+) cells in the colons and spleen respectively, were reduced by wogonin treatment. Ex vivo stimulations with high‐dose wogonin (50–100 μg/ml equivalent to 176–352 μM) could synergize with IL‐2 to promote the functions of CD4(+) and CD8(+) cells. However, regulatory T cell induction was inhibited. Wogonin stimulated the activation of NF‐κB and Erk but down‐regulated STAT3 phosphorylation in the CD4(+) T cells. Wogonin down‐regulated Erk and STAT3‐Y705 phosphorylation in the regulatory T cells but promoted NF‐κB and STAT3‐S727 activation. Our study demonstrated that high‐dose wogonin treatments would enhance immune activity by stimulating the effector T cells and by down‐regulating regulatory T cells. |
---|