Cargando…
Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs a...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264239/ https://www.ncbi.nlm.nih.gov/pubmed/28112157 http://dx.doi.org/10.1038/ncomms14243 |
_version_ | 1782500064725303296 |
---|---|
author | Wang, Chao Nam, Sung-Wook Cotte, John M. Jahnes, Christopher V. Colgan, Evan G. Bruce, Robert L. Brink, Markus Lofaro, Michael F. Patel, Jyotica V. Gignac, Lynne M. Joseph, Eric A. Rao, Satyavolu Papa Stolovitzky, Gustavo Polonsky, Stanislav Lin, Qinghuang |
author_facet | Wang, Chao Nam, Sung-Wook Cotte, John M. Jahnes, Christopher V. Colgan, Evan G. Bruce, Robert L. Brink, Markus Lofaro, Michael F. Patel, Jyotica V. Gignac, Lynne M. Joseph, Eric A. Rao, Satyavolu Papa Stolovitzky, Gustavo Polonsky, Stanislav Lin, Qinghuang |
author_sort | Wang, Chao |
collection | PubMed |
description | Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications. |
format | Online Article Text |
id | pubmed-5264239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52642392017-02-03 Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules Wang, Chao Nam, Sung-Wook Cotte, John M. Jahnes, Christopher V. Colgan, Evan G. Bruce, Robert L. Brink, Markus Lofaro, Michael F. Patel, Jyotica V. Gignac, Lynne M. Joseph, Eric A. Rao, Satyavolu Papa Stolovitzky, Gustavo Polonsky, Stanislav Lin, Qinghuang Nat Commun Article Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications. Nature Publishing Group 2017-01-23 /pmc/articles/PMC5264239/ /pubmed/28112157 http://dx.doi.org/10.1038/ncomms14243 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Wang, Chao Nam, Sung-Wook Cotte, John M. Jahnes, Christopher V. Colgan, Evan G. Bruce, Robert L. Brink, Markus Lofaro, Michael F. Patel, Jyotica V. Gignac, Lynne M. Joseph, Eric A. Rao, Satyavolu Papa Stolovitzky, Gustavo Polonsky, Stanislav Lin, Qinghuang Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules |
title | Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules |
title_full | Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules |
title_fullStr | Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules |
title_full_unstemmed | Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules |
title_short | Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules |
title_sort | wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single dna molecules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264239/ https://www.ncbi.nlm.nih.gov/pubmed/28112157 http://dx.doi.org/10.1038/ncomms14243 |
work_keys_str_mv | AT wangchao waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT namsungwook waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT cottejohnm waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT jahneschristopherv waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT colganevang waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT brucerobertl waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT brinkmarkus waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT lofaromichaelf waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT pateljyoticav waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT gignaclynnem waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT josepherica waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT raosatyavolupapa waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT stolovitzkygustavo waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT polonskystanislav waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules AT linqinghuang waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules |