Cargando…

Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules

Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chao, Nam, Sung-Wook, Cotte, John M., Jahnes, Christopher V., Colgan, Evan G., Bruce, Robert L., Brink, Markus, Lofaro, Michael F., Patel, Jyotica V., Gignac, Lynne M., Joseph, Eric A., Rao, Satyavolu Papa, Stolovitzky, Gustavo, Polonsky, Stanislav, Lin, Qinghuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264239/
https://www.ncbi.nlm.nih.gov/pubmed/28112157
http://dx.doi.org/10.1038/ncomms14243
_version_ 1782500064725303296
author Wang, Chao
Nam, Sung-Wook
Cotte, John M.
Jahnes, Christopher V.
Colgan, Evan G.
Bruce, Robert L.
Brink, Markus
Lofaro, Michael F.
Patel, Jyotica V.
Gignac, Lynne M.
Joseph, Eric A.
Rao, Satyavolu Papa
Stolovitzky, Gustavo
Polonsky, Stanislav
Lin, Qinghuang
author_facet Wang, Chao
Nam, Sung-Wook
Cotte, John M.
Jahnes, Christopher V.
Colgan, Evan G.
Bruce, Robert L.
Brink, Markus
Lofaro, Michael F.
Patel, Jyotica V.
Gignac, Lynne M.
Joseph, Eric A.
Rao, Satyavolu Papa
Stolovitzky, Gustavo
Polonsky, Stanislav
Lin, Qinghuang
author_sort Wang, Chao
collection PubMed
description Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications.
format Online
Article
Text
id pubmed-5264239
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52642392017-02-03 Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules Wang, Chao Nam, Sung-Wook Cotte, John M. Jahnes, Christopher V. Colgan, Evan G. Bruce, Robert L. Brink, Markus Lofaro, Michael F. Patel, Jyotica V. Gignac, Lynne M. Joseph, Eric A. Rao, Satyavolu Papa Stolovitzky, Gustavo Polonsky, Stanislav Lin, Qinghuang Nat Commun Article Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications. Nature Publishing Group 2017-01-23 /pmc/articles/PMC5264239/ /pubmed/28112157 http://dx.doi.org/10.1038/ncomms14243 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Chao
Nam, Sung-Wook
Cotte, John M.
Jahnes, Christopher V.
Colgan, Evan G.
Bruce, Robert L.
Brink, Markus
Lofaro, Michael F.
Patel, Jyotica V.
Gignac, Lynne M.
Joseph, Eric A.
Rao, Satyavolu Papa
Stolovitzky, Gustavo
Polonsky, Stanislav
Lin, Qinghuang
Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
title Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
title_full Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
title_fullStr Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
title_full_unstemmed Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
title_short Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
title_sort wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single dna molecules
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264239/
https://www.ncbi.nlm.nih.gov/pubmed/28112157
http://dx.doi.org/10.1038/ncomms14243
work_keys_str_mv AT wangchao waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT namsungwook waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT cottejohnm waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT jahneschristopherv waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT colganevang waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT brucerobertl waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT brinkmarkus waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT lofaromichaelf waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT pateljyoticav waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT gignaclynnem waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT josepherica waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT raosatyavolupapa waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT stolovitzkygustavo waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT polonskystanislav waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules
AT linqinghuang waferscaleintegrationofsacrificialnanofluidicchipsfordetectingandmanipulatingsinglednamolecules