Cargando…

Abundance, zoonotic potential and risk factors of intestinal parasitism amongst dog and cat populations: The scenario of Crete, Greece

BACKGROUND: The objectives of this study were to evaluate the prevalence and infection intensity of intestinal parasites in different dog and cat populations in Crete, Greece, estimate the zoonotic risk and identify risk factors. METHODS: Faecal samples from shelter, household and shepherd dogs and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kostopoulou, Despoina, Claerebout, Edwin, Arvanitis, Dimitrios, Ligda, Panagiota, Voutzourakis, Nikolaos, Casaert, Stijn, Sotiraki, Smaragda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264337/
https://www.ncbi.nlm.nih.gov/pubmed/28122583
http://dx.doi.org/10.1186/s13071-017-1989-8
Descripción
Sumario:BACKGROUND: The objectives of this study were to evaluate the prevalence and infection intensity of intestinal parasites in different dog and cat populations in Crete, Greece, estimate the zoonotic risk and identify risk factors. METHODS: Faecal samples from shelter, household and shepherd dogs and shelter and household cats were analyzed using sedimentation/flotation techniques. Giardia and Cryptosporidium were detected by a quantitative direct immunofluorescence assay (IFA). PCR and sequencing was performed to evaluate the zoonotic potential of Giardia and Cryptosporidium positive samples. RESULTS: Totals of 879 dog and 264 cat faecal samples were examined. In dogs, the overall prevalence was 25.2% (CI: 22.4–28.1) for Giardia spp.; 9.2% (CI: 7.3–11.1) for Ancylostoma/Uncinaria spp.; 7.6% (CI: 5.9–9.4) for Toxocara spp.; 5.9% (CI: 4.4–7.5) for Cryptosporidium spp.; 4.6% (CI: 3.2–5.9) for Cystoisospora spp.; 2.7% (CI: 1.7–3.8) for Toxascaris leonina; 1.7% (CI: 0.9–2.6) for Capillaria spp.; 0.8% (CI: 0.2–1.4) for taeniid eggs; 0.2% (CI: 0–0.5) for Dipylidium caninum; and 0.1% (CI: 0–0.3) for Strongyloides stercoralis. In cats, the prevalence was 20.5% (CI: 15.6–25.3) for Giardia spp.; 9.5% (CI: 5.9–13.0) for Cystoisospora spp.; 8.3% (CI: 5.0–11.7) for Toxocara spp.; 7.6% (CI: 4.4–10.8) for Ancylostoma/Uncinaria spp.; 6.8% (CI: 3.8–9.9) for Cryptosporidium spp.; 4.2% (CI: 1.8–6.6) for Capillaria spp.; 0.8% (CI: 0–1.8) for taeniid eggs; and 0.4% (CI: 0–1.1) for Hammondia/Toxoplasma. Concerning the risk factors evaluated, there was a negative association between age and Giardia infection and between age and T. leonina infection intensity for dogs. Sequencing results revealed the presence of mainly animal-specific G. duodenalis assemblages C and D in dogs and assemblages F, C and BIV-like in cats, with only a limited number of (co-)infections with assemblage A. As for Cryptosporidium, the dog-specific C. canis and the pig-specific C. scrofarum were detected in dogs and the cat-specific C. felis was detected in cats. CONCLUSIONS: High levels of parasitism in both dogs and cats were recorded. Giardia was the most prevalent parasite in all dog and cat populations except for shepherd dogs. Genotyping results suggest a limited zoonotic risk of Giardia and Cryptosporidium infections from dogs and cats in Crete. Taeniid eggs were more prevalent in shepherd dogs suggesting access to carcasses and posing a threat for cystic echinococcosis transmission. Infection rates of Toxocara spp. in both dogs and cats show that companion animals could be a significant source of infection to humans. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-017-1989-8) contains supplementary material, which is available to authorized users.