Cargando…
Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease
Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily depen...
Autores principales: | Adeli, Ehsan, Wu, Guorong, Saghafi, Behrouz, An, Le, Shi, Feng, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264393/ https://www.ncbi.nlm.nih.gov/pubmed/28120883 http://dx.doi.org/10.1038/srep41069 |
Ejemplares similares
-
A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis
por: An, Le, et al.
Publicado: (2017) -
A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
por: Sun, Shiquan, et al.
Publicado: (2014) -
Feature selection of gene expression data for Cancer classification using double RBF-kernels
por: Liu, Shenghui, et al.
Publicado: (2018) -
Feature selection for kernel methods in systems biology
por: Brouard, Céline, et al.
Publicado: (2022) -
Mixed kernel SVR addressing Parkinson’s progression from voice features
por: Bárcenas, Roberto, et al.
Publicado: (2022)