Cargando…

Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis

We aimed to study the renal injury and hypertension induced by chronic intermittent hypoxia (CIH) and the protective effects mediated by angiotensin 1-7 [Ang(1-7)]. We randomly assigned 32 male Sprague-Dawley rats (body weight 180-200 g) to normoxia control, CIH, Ang(1-7)-treated normoxia, and Ang(1...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, W., Kang, J., Hu, K., Tang, S., Zhou, X., Yu, S., Xu, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Associação Brasileira de Divulgação Científica 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264539/
https://www.ncbi.nlm.nih.gov/pubmed/28076452
http://dx.doi.org/10.1590/1414-431X20165594
Descripción
Sumario:We aimed to study the renal injury and hypertension induced by chronic intermittent hypoxia (CIH) and the protective effects mediated by angiotensin 1-7 [Ang(1-7)]. We randomly assigned 32 male Sprague-Dawley rats (body weight 180-200 g) to normoxia control, CIH, Ang(1-7)-treated normoxia, and Ang(1-7)-treated CIH groups. Systolic blood pressure (SBP) was monitored at the start and end of each week. Renal sympathetic nerve activity (RSNA) was recorded. CTGF and TGF-β were detected by immunohistochemistry and western blotting. Tissue parameters of oxidative stress were also determined. In addition, renal levels of interleukin-6, tumor necrosis factor-α, nitrotyrosine, and hypoxia-inducible factor-1α were determined by immunohistochemistry, immunoblotting, and ELISA. TUNEL assay results and cleaved caspase 3 and 12 were also determined. Ang(1-7) induced a reduction in SBP together with a restoration of RSNA in the rat model of CIH. Ang(1-7) treatment also suppressed the production of reactive oxygen species, reduced renal tissue inflammation, ameliorated mesangial expansion, and decreased renal fibrosis. Thus, Ang(1-7) treatment exerted renoprotective effects on CIH-induced renal injury and was associated with a reduction of oxidative stress, inflammation and fibrosis. Ang(1-7) might therefore represent a promising therapy for obstructive sleep apnea-related hypertension and renal injury.