Cargando…
Insight into Generation and Evolution of Sea-Salt Aerosols from Field Measurements in Diversified Marine and Coastal Atmospheres
This report focuses on studying generation and/or evolution of sea-salt aerosols (SSA) on basis of measurements in the Northwest Pacific Ocean (NWPO), the marginal seas of China, at sea-beach sites and a semi-urban coastal site in 2012–2015. From measurements in the NWPO, we obtained the smallest ge...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5264635/ https://www.ncbi.nlm.nih.gov/pubmed/28120906 http://dx.doi.org/10.1038/srep41260 |
Sumario: | This report focuses on studying generation and/or evolution of sea-salt aerosols (SSA) on basis of measurements in the Northwest Pacific Ocean (NWPO), the marginal seas of China, at sea-beach sites and a semi-urban coastal site in 2012–2015. From measurements in the NWPO, we obtained the smallest generation function of the super-micron SSA mass ([M(SSA)]) by the local wind comparing to those previously reported. Vessel-caused wave-breaking was found to greatly enhance generation of SSA and increase [M(SSA)], which was subject to non-natural generation of SSA. However, naturally enhanced generation of SSA was indeed observed in the marginal seas and at the sea-beach site. The two enhancement mechanisms may explain the difference among this and previous studies. Size distributions of super-micron SSA exhibited two modes, i.e., 1–2 μm mode and ~5 μm mode. The 1–2 μm mode of SSA was enhanced more and comparable to the ~5 μm mode under the wind speed >7 m/s. However, the smaller mode SSA was largely reduced from open oceans to sea-beach sites with reducing wind speed. The two super-micron modes were comparable again at a semi-urban coastal site, suggesting that the smaller super-micron mode SSA may play more important roles in atmospheres. |
---|