Cargando…
In vivo expansion and activation of γδ T cells as immunotherapy for refractory neuroblastoma: A phase 1 study
INTRODUCTION: CD3+ γδ+ T cells comprise 2% to 5% of circulating T cells with Vγ9Vδ2+ cells the dominant circulating subtype. Vγ9Vδ2+ cells recognize non-peptide phosphoantigens and stress-associated NKG2D ligands expressed on malignant cells. Strategies that incorporate the tumoricidal properties of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5265919/ https://www.ncbi.nlm.nih.gov/pubmed/27684826 http://dx.doi.org/10.1097/MD.0000000000004909 |
Sumario: | INTRODUCTION: CD3+ γδ+ T cells comprise 2% to 5% of circulating T cells with Vγ9Vδ2+ cells the dominant circulating subtype. Vγ9Vδ2+ cells recognize non-peptide phosphoantigens and stress-associated NKG2D ligands expressed on malignant cells. Strategies that incorporate the tumoricidal properties of γδ T cells represent a promising immunotherapeutic strategy for treatment of solid malignancies including neuroblastoma (NB). In this prospective, non-randomized Phase I trial, we assessed whether circulating Vγ9Vδ2+ cells could be safely expanded using intravenous ZOL (Zoledronate [Zometa(®)]) and subcutaneous Interleukin-2 (IL-2) in patients with refractory NB. METHODS: Patients 2 to 21 years of age with refractory neuroblastoma with no known curative therapeutic options received ZOL on day 1, and IL-2 on days 1 to 5 and 15 to 19 of each 28-day cycle (n = 4). Lymphocyte immunophenotyping was assessed weekly. Immunophenotyping studies from the treatment group were compared with healthy pediatric controls (n = 16; range, 5y–15y) and of untreated NB disease controls (n = 9; range, 4m–18y). RESULTS: Treatment was well tolerated with no unexpected grade 3 and 4 toxicities. Lymphocyte subset counts did not differ significantly between volunteers and disease controls with the exception of γδ+ T cell counts that were significantly higher in healthy volunteers (212 + 93 vs. 89 + 42, P = 0.05). Study patients showed increases in circulating γδ+ T cell count (3–10 fold) after the first week, increasing into the range seen in healthy volunteers (125 + 37, P = 0.1940). Interestingly, all ZOL + IL-2 treated patients showed significant increases in CD3+CD4+CD27(hi)CD127(dim) T cells that rose weekly in 2 patients throughout the 4 weeks of observation (maximum 41% and 24% of total CD3+CD4+ T cells, respectively). CONCLUSIONS: In summary, combined ZOL and IL-2 is well tolerated and restored γδ+ T cell counts to the normal range with a moderate expansion of Natural Killer cells. Progressive increases in circulating CD4+ T cells with a regulatory phenotype cells may offset beneficial effects of this therapy. |
---|