Cargando…
Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls
Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266260/ https://www.ncbi.nlm.nih.gov/pubmed/28122036 http://dx.doi.org/10.1371/journal.pone.0169906 |
_version_ | 1782500432941154304 |
---|---|
author | Pop Ristova, Petra Bienhold, Christina Wenzhöfer, Frank Rossel, Pamela E. Boetius, Antje |
author_facet | Pop Ristova, Petra Bienhold, Christina Wenzhöfer, Frank Rossel, Pamela E. Boetius, Antje |
author_sort | Pop Ristova, Petra |
collection | PubMed |
description | Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on the Eastern Mediterranean sunken wooden logs. This study suggests that biogeography and succession play an important role for the composition of bacteria and fauna of wood-associated communities, and that wood can act as stepping-stones for seep biota. |
format | Online Article Text |
id | pubmed-5266260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52662602017-02-17 Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls Pop Ristova, Petra Bienhold, Christina Wenzhöfer, Frank Rossel, Pamela E. Boetius, Antje PLoS One Research Article Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on the Eastern Mediterranean sunken wooden logs. This study suggests that biogeography and succession play an important role for the composition of bacteria and fauna of wood-associated communities, and that wood can act as stepping-stones for seep biota. Public Library of Science 2017-01-25 /pmc/articles/PMC5266260/ /pubmed/28122036 http://dx.doi.org/10.1371/journal.pone.0169906 Text en © 2017 Pop Ristova et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pop Ristova, Petra Bienhold, Christina Wenzhöfer, Frank Rossel, Pamela E. Boetius, Antje Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls |
title | Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls |
title_full | Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls |
title_fullStr | Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls |
title_full_unstemmed | Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls |
title_short | Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls |
title_sort | temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266260/ https://www.ncbi.nlm.nih.gov/pubmed/28122036 http://dx.doi.org/10.1371/journal.pone.0169906 |
work_keys_str_mv | AT popristovapetra temporalandspatialvariationsofbacterialandfaunalcommunitiesassociatedwithdeepseawoodfalls AT bienholdchristina temporalandspatialvariationsofbacterialandfaunalcommunitiesassociatedwithdeepseawoodfalls AT wenzhoferfrank temporalandspatialvariationsofbacterialandfaunalcommunitiesassociatedwithdeepseawoodfalls AT rosselpamelae temporalandspatialvariationsofbacterialandfaunalcommunitiesassociatedwithdeepseawoodfalls AT boetiusantje temporalandspatialvariationsofbacterialandfaunalcommunitiesassociatedwithdeepseawoodfalls |