Cargando…
Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
BACKGROUND AND PURPOSE—: The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266416/ https://www.ncbi.nlm.nih.gov/pubmed/28034966 http://dx.doi.org/10.1161/STROKEAHA.116.014506 |
_version_ | 1782500467088031744 |
---|---|
author | Hachiya, Tsuyoshi Kamatani, Yoichiro Takahashi, Atsushi Hata, Jun Furukawa, Ryohei Shiwa, Yuh Yamaji, Taiki Hara, Megumi Tanno, Kozo Ohmomo, Hideki Ono, Kanako Takashima, Naoyuki Matsuda, Koichi Wakai, Kenji Sawada, Norie Iwasaki, Motoki Yamagishi, Kazumasa Ago, Tetsuro Ninomiya, Toshiharu Fukushima, Akimune Hozawa, Atsushi Minegishi, Naoko Satoh, Mamoru Endo, Ryujin Sasaki, Makoto Sakata, Kiyomi Kobayashi, Seiichiro Ogasawara, Kuniaki Nakamura, Motoyuki Hitomi, Jiro Kita, Yoshikuni Tanaka, Keitaro Iso, Hiroyasu Kitazono, Takanari Kubo, Michiaki Tanaka, Hideo Tsugane, Shoichiro Kiyohara, Yutaka Yamamoto, Masayuki Sobue, Kenji Shimizu, Atsushi |
author_facet | Hachiya, Tsuyoshi Kamatani, Yoichiro Takahashi, Atsushi Hata, Jun Furukawa, Ryohei Shiwa, Yuh Yamaji, Taiki Hara, Megumi Tanno, Kozo Ohmomo, Hideki Ono, Kanako Takashima, Naoyuki Matsuda, Koichi Wakai, Kenji Sawada, Norie Iwasaki, Motoki Yamagishi, Kazumasa Ago, Tetsuro Ninomiya, Toshiharu Fukushima, Akimune Hozawa, Atsushi Minegishi, Naoko Satoh, Mamoru Endo, Ryujin Sasaki, Makoto Sakata, Kiyomi Kobayashi, Seiichiro Ogasawara, Kuniaki Nakamura, Motoyuki Hitomi, Jiro Kita, Yoshikuni Tanaka, Keitaro Iso, Hiroyasu Kitazono, Takanari Kubo, Michiaki Tanaka, Hideo Tsugane, Shoichiro Kiyohara, Yutaka Yamamoto, Masayuki Sobue, Kenji Shimizu, Atsushi |
author_sort | Hachiya, Tsuyoshi |
collection | PubMed |
description | BACKGROUND AND PURPOSE—: The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. METHODS—: We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). RESULTS—: In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). CONCLUSIONS—: The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors. |
format | Online Article Text |
id | pubmed-5266416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-52664162017-02-08 Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score Hachiya, Tsuyoshi Kamatani, Yoichiro Takahashi, Atsushi Hata, Jun Furukawa, Ryohei Shiwa, Yuh Yamaji, Taiki Hara, Megumi Tanno, Kozo Ohmomo, Hideki Ono, Kanako Takashima, Naoyuki Matsuda, Koichi Wakai, Kenji Sawada, Norie Iwasaki, Motoki Yamagishi, Kazumasa Ago, Tetsuro Ninomiya, Toshiharu Fukushima, Akimune Hozawa, Atsushi Minegishi, Naoko Satoh, Mamoru Endo, Ryujin Sasaki, Makoto Sakata, Kiyomi Kobayashi, Seiichiro Ogasawara, Kuniaki Nakamura, Motoyuki Hitomi, Jiro Kita, Yoshikuni Tanaka, Keitaro Iso, Hiroyasu Kitazono, Takanari Kubo, Michiaki Tanaka, Hideo Tsugane, Shoichiro Kiyohara, Yutaka Yamamoto, Masayuki Sobue, Kenji Shimizu, Atsushi Stroke Original Contributions BACKGROUND AND PURPOSE—: The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. METHODS—: We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). RESULTS—: In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). CONCLUSIONS—: The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors. Lippincott Williams & Wilkins 2017-02 2017-01-23 /pmc/articles/PMC5266416/ /pubmed/28034966 http://dx.doi.org/10.1161/STROKEAHA.116.014506 Text en © 2016 The Authors. Stroke is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDervis (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made. |
spellingShingle | Original Contributions Hachiya, Tsuyoshi Kamatani, Yoichiro Takahashi, Atsushi Hata, Jun Furukawa, Ryohei Shiwa, Yuh Yamaji, Taiki Hara, Megumi Tanno, Kozo Ohmomo, Hideki Ono, Kanako Takashima, Naoyuki Matsuda, Koichi Wakai, Kenji Sawada, Norie Iwasaki, Motoki Yamagishi, Kazumasa Ago, Tetsuro Ninomiya, Toshiharu Fukushima, Akimune Hozawa, Atsushi Minegishi, Naoko Satoh, Mamoru Endo, Ryujin Sasaki, Makoto Sakata, Kiyomi Kobayashi, Seiichiro Ogasawara, Kuniaki Nakamura, Motoyuki Hitomi, Jiro Kita, Yoshikuni Tanaka, Keitaro Iso, Hiroyasu Kitazono, Takanari Kubo, Michiaki Tanaka, Hideo Tsugane, Shoichiro Kiyohara, Yutaka Yamamoto, Masayuki Sobue, Kenji Shimizu, Atsushi Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score |
title | Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score |
title_full | Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score |
title_fullStr | Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score |
title_full_unstemmed | Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score |
title_short | Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score |
title_sort | genetic predisposition to ischemic stroke: a polygenic risk score |
topic | Original Contributions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266416/ https://www.ncbi.nlm.nih.gov/pubmed/28034966 http://dx.doi.org/10.1161/STROKEAHA.116.014506 |
work_keys_str_mv | AT hachiyatsuyoshi geneticpredispositiontoischemicstrokeapolygenicriskscore AT kamataniyoichiro geneticpredispositiontoischemicstrokeapolygenicriskscore AT takahashiatsushi geneticpredispositiontoischemicstrokeapolygenicriskscore AT hatajun geneticpredispositiontoischemicstrokeapolygenicriskscore AT furukawaryohei geneticpredispositiontoischemicstrokeapolygenicriskscore AT shiwayuh geneticpredispositiontoischemicstrokeapolygenicriskscore AT yamajitaiki geneticpredispositiontoischemicstrokeapolygenicriskscore AT haramegumi geneticpredispositiontoischemicstrokeapolygenicriskscore AT tannokozo geneticpredispositiontoischemicstrokeapolygenicriskscore AT ohmomohideki geneticpredispositiontoischemicstrokeapolygenicriskscore AT onokanako geneticpredispositiontoischemicstrokeapolygenicriskscore AT takashimanaoyuki geneticpredispositiontoischemicstrokeapolygenicriskscore AT matsudakoichi geneticpredispositiontoischemicstrokeapolygenicriskscore AT wakaikenji geneticpredispositiontoischemicstrokeapolygenicriskscore AT sawadanorie geneticpredispositiontoischemicstrokeapolygenicriskscore AT iwasakimotoki geneticpredispositiontoischemicstrokeapolygenicriskscore AT yamagishikazumasa geneticpredispositiontoischemicstrokeapolygenicriskscore AT agotetsuro geneticpredispositiontoischemicstrokeapolygenicriskscore AT ninomiyatoshiharu geneticpredispositiontoischemicstrokeapolygenicriskscore AT fukushimaakimune geneticpredispositiontoischemicstrokeapolygenicriskscore AT hozawaatsushi geneticpredispositiontoischemicstrokeapolygenicriskscore AT minegishinaoko geneticpredispositiontoischemicstrokeapolygenicriskscore AT satohmamoru geneticpredispositiontoischemicstrokeapolygenicriskscore AT endoryujin geneticpredispositiontoischemicstrokeapolygenicriskscore AT sasakimakoto geneticpredispositiontoischemicstrokeapolygenicriskscore AT sakatakiyomi geneticpredispositiontoischemicstrokeapolygenicriskscore AT kobayashiseiichiro geneticpredispositiontoischemicstrokeapolygenicriskscore AT ogasawarakuniaki geneticpredispositiontoischemicstrokeapolygenicriskscore AT nakamuramotoyuki geneticpredispositiontoischemicstrokeapolygenicriskscore AT hitomijiro geneticpredispositiontoischemicstrokeapolygenicriskscore AT kitayoshikuni geneticpredispositiontoischemicstrokeapolygenicriskscore AT tanakakeitaro geneticpredispositiontoischemicstrokeapolygenicriskscore AT isohiroyasu geneticpredispositiontoischemicstrokeapolygenicriskscore AT kitazonotakanari geneticpredispositiontoischemicstrokeapolygenicriskscore AT kubomichiaki geneticpredispositiontoischemicstrokeapolygenicriskscore AT tanakahideo geneticpredispositiontoischemicstrokeapolygenicriskscore AT tsuganeshoichiro geneticpredispositiontoischemicstrokeapolygenicriskscore AT kiyoharayutaka geneticpredispositiontoischemicstrokeapolygenicriskscore AT yamamotomasayuki geneticpredispositiontoischemicstrokeapolygenicriskscore AT sobuekenji geneticpredispositiontoischemicstrokeapolygenicriskscore AT shimizuatsushi geneticpredispositiontoischemicstrokeapolygenicriskscore |