_version_ 1782500467088031744
author Hachiya, Tsuyoshi
Kamatani, Yoichiro
Takahashi, Atsushi
Hata, Jun
Furukawa, Ryohei
Shiwa, Yuh
Yamaji, Taiki
Hara, Megumi
Tanno, Kozo
Ohmomo, Hideki
Ono, Kanako
Takashima, Naoyuki
Matsuda, Koichi
Wakai, Kenji
Sawada, Norie
Iwasaki, Motoki
Yamagishi, Kazumasa
Ago, Tetsuro
Ninomiya, Toshiharu
Fukushima, Akimune
Hozawa, Atsushi
Minegishi, Naoko
Satoh, Mamoru
Endo, Ryujin
Sasaki, Makoto
Sakata, Kiyomi
Kobayashi, Seiichiro
Ogasawara, Kuniaki
Nakamura, Motoyuki
Hitomi, Jiro
Kita, Yoshikuni
Tanaka, Keitaro
Iso, Hiroyasu
Kitazono, Takanari
Kubo, Michiaki
Tanaka, Hideo
Tsugane, Shoichiro
Kiyohara, Yutaka
Yamamoto, Masayuki
Sobue, Kenji
Shimizu, Atsushi
author_facet Hachiya, Tsuyoshi
Kamatani, Yoichiro
Takahashi, Atsushi
Hata, Jun
Furukawa, Ryohei
Shiwa, Yuh
Yamaji, Taiki
Hara, Megumi
Tanno, Kozo
Ohmomo, Hideki
Ono, Kanako
Takashima, Naoyuki
Matsuda, Koichi
Wakai, Kenji
Sawada, Norie
Iwasaki, Motoki
Yamagishi, Kazumasa
Ago, Tetsuro
Ninomiya, Toshiharu
Fukushima, Akimune
Hozawa, Atsushi
Minegishi, Naoko
Satoh, Mamoru
Endo, Ryujin
Sasaki, Makoto
Sakata, Kiyomi
Kobayashi, Seiichiro
Ogasawara, Kuniaki
Nakamura, Motoyuki
Hitomi, Jiro
Kita, Yoshikuni
Tanaka, Keitaro
Iso, Hiroyasu
Kitazono, Takanari
Kubo, Michiaki
Tanaka, Hideo
Tsugane, Shoichiro
Kiyohara, Yutaka
Yamamoto, Masayuki
Sobue, Kenji
Shimizu, Atsushi
author_sort Hachiya, Tsuyoshi
collection PubMed
description BACKGROUND AND PURPOSE—: The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. METHODS—: We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). RESULTS—: In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). CONCLUSIONS—: The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors.
format Online
Article
Text
id pubmed-5266416
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-52664162017-02-08 Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score Hachiya, Tsuyoshi Kamatani, Yoichiro Takahashi, Atsushi Hata, Jun Furukawa, Ryohei Shiwa, Yuh Yamaji, Taiki Hara, Megumi Tanno, Kozo Ohmomo, Hideki Ono, Kanako Takashima, Naoyuki Matsuda, Koichi Wakai, Kenji Sawada, Norie Iwasaki, Motoki Yamagishi, Kazumasa Ago, Tetsuro Ninomiya, Toshiharu Fukushima, Akimune Hozawa, Atsushi Minegishi, Naoko Satoh, Mamoru Endo, Ryujin Sasaki, Makoto Sakata, Kiyomi Kobayashi, Seiichiro Ogasawara, Kuniaki Nakamura, Motoyuki Hitomi, Jiro Kita, Yoshikuni Tanaka, Keitaro Iso, Hiroyasu Kitazono, Takanari Kubo, Michiaki Tanaka, Hideo Tsugane, Shoichiro Kiyohara, Yutaka Yamamoto, Masayuki Sobue, Kenji Shimizu, Atsushi Stroke Original Contributions BACKGROUND AND PURPOSE—: The prediction of genetic predispositions to ischemic stroke (IS) may allow the identification of individuals at elevated risk and thereby prevent IS in clinical practice. Previously developed weighted multilocus genetic risk scores showed limited predictive ability for IS. Here, we investigated the predictive ability of a newer method, polygenic risk score (polyGRS), based on the idea that a few strong signals, as well as several weaker signals, can be collectively informative to determine IS risk. METHODS—: We genotyped 13 214 Japanese individuals with IS and 26 470 controls (derivation samples) and generated both multilocus genetic risk scores and polyGRS, using the same derivation data set. The predictive abilities of each scoring system were then assessed using 2 independent sets of Japanese samples (KyushuU and JPJM data sets). RESULTS—: In both validation data sets, polyGRS was shown to be significantly associated with IS, but weighted multilocus genetic risk scores was not. Comparing the highest with the lowest polyGRS quintile, the odds ratios for IS were 1.75 (95% confidence interval, 1.33–2.31) and 1.99 (95% confidence interval, 1.19–3.33) in the KyushuU and JPJM samples, respectively. Using the KyushuU samples, the addition of polyGRS to a nongenetic risk model resulted in a significant improvement of the predictive ability (net reclassification improvement=0.151; P<0.001). CONCLUSIONS—: The polyGRS was shown to be superior to weighted multilocus genetic risk scores as an IS prediction model. Thus, together with the nongenetic risk factors, polyGRS will provide valuable information for individual risk assessment and management of modifiable risk factors. Lippincott Williams & Wilkins 2017-02 2017-01-23 /pmc/articles/PMC5266416/ /pubmed/28034966 http://dx.doi.org/10.1161/STROKEAHA.116.014506 Text en © 2016 The Authors. Stroke is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDervis (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.
spellingShingle Original Contributions
Hachiya, Tsuyoshi
Kamatani, Yoichiro
Takahashi, Atsushi
Hata, Jun
Furukawa, Ryohei
Shiwa, Yuh
Yamaji, Taiki
Hara, Megumi
Tanno, Kozo
Ohmomo, Hideki
Ono, Kanako
Takashima, Naoyuki
Matsuda, Koichi
Wakai, Kenji
Sawada, Norie
Iwasaki, Motoki
Yamagishi, Kazumasa
Ago, Tetsuro
Ninomiya, Toshiharu
Fukushima, Akimune
Hozawa, Atsushi
Minegishi, Naoko
Satoh, Mamoru
Endo, Ryujin
Sasaki, Makoto
Sakata, Kiyomi
Kobayashi, Seiichiro
Ogasawara, Kuniaki
Nakamura, Motoyuki
Hitomi, Jiro
Kita, Yoshikuni
Tanaka, Keitaro
Iso, Hiroyasu
Kitazono, Takanari
Kubo, Michiaki
Tanaka, Hideo
Tsugane, Shoichiro
Kiyohara, Yutaka
Yamamoto, Masayuki
Sobue, Kenji
Shimizu, Atsushi
Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
title Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
title_full Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
title_fullStr Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
title_full_unstemmed Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
title_short Genetic Predisposition to Ischemic Stroke: A Polygenic Risk Score
title_sort genetic predisposition to ischemic stroke: a polygenic risk score
topic Original Contributions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266416/
https://www.ncbi.nlm.nih.gov/pubmed/28034966
http://dx.doi.org/10.1161/STROKEAHA.116.014506
work_keys_str_mv AT hachiyatsuyoshi geneticpredispositiontoischemicstrokeapolygenicriskscore
AT kamataniyoichiro geneticpredispositiontoischemicstrokeapolygenicriskscore
AT takahashiatsushi geneticpredispositiontoischemicstrokeapolygenicriskscore
AT hatajun geneticpredispositiontoischemicstrokeapolygenicriskscore
AT furukawaryohei geneticpredispositiontoischemicstrokeapolygenicriskscore
AT shiwayuh geneticpredispositiontoischemicstrokeapolygenicriskscore
AT yamajitaiki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT haramegumi geneticpredispositiontoischemicstrokeapolygenicriskscore
AT tannokozo geneticpredispositiontoischemicstrokeapolygenicriskscore
AT ohmomohideki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT onokanako geneticpredispositiontoischemicstrokeapolygenicriskscore
AT takashimanaoyuki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT matsudakoichi geneticpredispositiontoischemicstrokeapolygenicriskscore
AT wakaikenji geneticpredispositiontoischemicstrokeapolygenicriskscore
AT sawadanorie geneticpredispositiontoischemicstrokeapolygenicriskscore
AT iwasakimotoki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT yamagishikazumasa geneticpredispositiontoischemicstrokeapolygenicriskscore
AT agotetsuro geneticpredispositiontoischemicstrokeapolygenicriskscore
AT ninomiyatoshiharu geneticpredispositiontoischemicstrokeapolygenicriskscore
AT fukushimaakimune geneticpredispositiontoischemicstrokeapolygenicriskscore
AT hozawaatsushi geneticpredispositiontoischemicstrokeapolygenicriskscore
AT minegishinaoko geneticpredispositiontoischemicstrokeapolygenicriskscore
AT satohmamoru geneticpredispositiontoischemicstrokeapolygenicriskscore
AT endoryujin geneticpredispositiontoischemicstrokeapolygenicriskscore
AT sasakimakoto geneticpredispositiontoischemicstrokeapolygenicriskscore
AT sakatakiyomi geneticpredispositiontoischemicstrokeapolygenicriskscore
AT kobayashiseiichiro geneticpredispositiontoischemicstrokeapolygenicriskscore
AT ogasawarakuniaki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT nakamuramotoyuki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT hitomijiro geneticpredispositiontoischemicstrokeapolygenicriskscore
AT kitayoshikuni geneticpredispositiontoischemicstrokeapolygenicriskscore
AT tanakakeitaro geneticpredispositiontoischemicstrokeapolygenicriskscore
AT isohiroyasu geneticpredispositiontoischemicstrokeapolygenicriskscore
AT kitazonotakanari geneticpredispositiontoischemicstrokeapolygenicriskscore
AT kubomichiaki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT tanakahideo geneticpredispositiontoischemicstrokeapolygenicriskscore
AT tsuganeshoichiro geneticpredispositiontoischemicstrokeapolygenicriskscore
AT kiyoharayutaka geneticpredispositiontoischemicstrokeapolygenicriskscore
AT yamamotomasayuki geneticpredispositiontoischemicstrokeapolygenicriskscore
AT sobuekenji geneticpredispositiontoischemicstrokeapolygenicriskscore
AT shimizuatsushi geneticpredispositiontoischemicstrokeapolygenicriskscore