Cargando…

4-Methylumbelliferone Suppresses Hyaluronan Synthesis and Tumor Progression in SCID Mice Intra-abdominally Inoculated With Pancreatic Cancer Cells

OBJECTIVES: Pancreatic ductal adenocarcinoma contains large amounts of the glycosaminoglycan hyaluronan (HA), which is involved in various physiological processes. Here, we aimed to clarify the anticancer mechanisms of 4-methylumbelliferone (MU), a well-known HA synthesis inhibitor. METHODS: MIA PaC...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagase, Hayato, Kudo, Daisuke, Suto, Akiko, Yoshida, Eri, Suto, Shinichiro, Negishi, Mika, Kakizaki, Ikuko, Hakamada, Kenichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266424/
https://www.ncbi.nlm.nih.gov/pubmed/27846148
http://dx.doi.org/10.1097/MPA.0000000000000741
Descripción
Sumario:OBJECTIVES: Pancreatic ductal adenocarcinoma contains large amounts of the glycosaminoglycan hyaluronan (HA), which is involved in various physiological processes. Here, we aimed to clarify the anticancer mechanisms of 4-methylumbelliferone (MU), a well-known HA synthesis inhibitor. METHODS: MIA PaCa-2 human pancreatic cancer cells were used. We evaluated cellular proliferation, migration, and invasion in the presence of MU, exogenous HA, and an anti-CD44 antibody. We also analyzed apoptosis, CD44 expression, and HA-binding ability using flow cytometry. The HA content in tumor tissue was quantified and histopathologically investigated in mice who had been inoculated with cancer cells. RESULTS: In vitro, MU inhibited pericellular HA matrix formation; however, HAS3 mRNA was up-regulated. Treatment with 0.5 mM MU suppressed cellular proliferation by 26.4%, migration by 14.7%, and invasion by 22.7%. Moreover, MU also significantly increased apoptosis. CD44 expression and HA-binding ability were not altered by MU. In vivo, MU suppressed HA accumulation in pancreatic tumors and improved survival times in tumor-bearing mice. CONCLUSIONS: 4-Methylumbelliferone indirectly caused apoptosis in pancreatic cancer cells by inhibiting HA production. 4-Methylumbelliferone may be a promising agent in the treatment of pancreatic cancer.