Cargando…

Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks

Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eye...

Descripción completa

Detalles Bibliográficos
Autores principales: Triggiani, Antonio I., Bevilacqua, Vitoantonio, Brunetti, Antonio, Lizio, Roberta, Tattoli, Giacomo, Cassano, Fabio, Soricelli, Andrea, Ferri, Raffaele, Nobili, Flavio, Gesualdo, Loreto, Barulli, Maria R., Tortelli, Rosanna, Cardinali, Valentina, Giannini, Antonio, Spagnolo, Pantaleo, Armenise, Silvia, Stocchi, Fabrizio, Buenza, Grazia, Scianatico, Gaetano, Logroscino, Giancarlo, Lacidogna, Giordano, Orzi, Francesco, Buttinelli, Carla, Giubilei, Franco, Del Percio, Claudio, Frisoni, Giovanni B., Babiloni, Claudio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266711/
https://www.ncbi.nlm.nih.gov/pubmed/28184183
http://dx.doi.org/10.3389/fnins.2016.00604
_version_ 1782500497619419136
author Triggiani, Antonio I.
Bevilacqua, Vitoantonio
Brunetti, Antonio
Lizio, Roberta
Tattoli, Giacomo
Cassano, Fabio
Soricelli, Andrea
Ferri, Raffaele
Nobili, Flavio
Gesualdo, Loreto
Barulli, Maria R.
Tortelli, Rosanna
Cardinali, Valentina
Giannini, Antonio
Spagnolo, Pantaleo
Armenise, Silvia
Stocchi, Fabrizio
Buenza, Grazia
Scianatico, Gaetano
Logroscino, Giancarlo
Lacidogna, Giordano
Orzi, Francesco
Buttinelli, Carla
Giubilei, Franco
Del Percio, Claudio
Frisoni, Giovanni B.
Babiloni, Claudio
author_facet Triggiani, Antonio I.
Bevilacqua, Vitoantonio
Brunetti, Antonio
Lizio, Roberta
Tattoli, Giacomo
Cassano, Fabio
Soricelli, Andrea
Ferri, Raffaele
Nobili, Flavio
Gesualdo, Loreto
Barulli, Maria R.
Tortelli, Rosanna
Cardinali, Valentina
Giannini, Antonio
Spagnolo, Pantaleo
Armenise, Silvia
Stocchi, Fabrizio
Buenza, Grazia
Scianatico, Gaetano
Logroscino, Giancarlo
Lacidogna, Giordano
Orzi, Francesco
Buttinelli, Carla
Giubilei, Franco
Del Percio, Claudio
Frisoni, Giovanni B.
Babiloni, Claudio
author_sort Triggiani, Antonio I.
collection PubMed
description Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2–4 Hz), theta (4–8 Hz Hz), alpha1 (8–10.5 Hz), and alpha2 (10.5–13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification.
format Online
Article
Text
id pubmed-5266711
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-52667112017-02-09 Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks Triggiani, Antonio I. Bevilacqua, Vitoantonio Brunetti, Antonio Lizio, Roberta Tattoli, Giacomo Cassano, Fabio Soricelli, Andrea Ferri, Raffaele Nobili, Flavio Gesualdo, Loreto Barulli, Maria R. Tortelli, Rosanna Cardinali, Valentina Giannini, Antonio Spagnolo, Pantaleo Armenise, Silvia Stocchi, Fabrizio Buenza, Grazia Scianatico, Gaetano Logroscino, Giancarlo Lacidogna, Giordano Orzi, Francesco Buttinelli, Carla Giubilei, Franco Del Percio, Claudio Frisoni, Giovanni B. Babiloni, Claudio Front Neurosci Neuroscience Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2–4 Hz), theta (4–8 Hz Hz), alpha1 (8–10.5 Hz), and alpha2 (10.5–13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification. Frontiers Media S.A. 2017-01-26 /pmc/articles/PMC5266711/ /pubmed/28184183 http://dx.doi.org/10.3389/fnins.2016.00604 Text en Copyright © 2017 Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Soricelli, Ferri, Nobili, Gesualdo, Barulli, Tortelli, Cardinali, Giannini, Spagnolo, Armenise, Stocchi, Buenza, Scianatico, Logroscino, Lacidogna, Orzi, Buttinelli, Giubilei, Del Percio, Frisoni and Babiloni. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Triggiani, Antonio I.
Bevilacqua, Vitoantonio
Brunetti, Antonio
Lizio, Roberta
Tattoli, Giacomo
Cassano, Fabio
Soricelli, Andrea
Ferri, Raffaele
Nobili, Flavio
Gesualdo, Loreto
Barulli, Maria R.
Tortelli, Rosanna
Cardinali, Valentina
Giannini, Antonio
Spagnolo, Pantaleo
Armenise, Silvia
Stocchi, Fabrizio
Buenza, Grazia
Scianatico, Gaetano
Logroscino, Giancarlo
Lacidogna, Giordano
Orzi, Francesco
Buttinelli, Carla
Giubilei, Franco
Del Percio, Claudio
Frisoni, Giovanni B.
Babiloni, Claudio
Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
title Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
title_full Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
title_fullStr Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
title_full_unstemmed Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
title_short Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
title_sort classification of healthy subjects and alzheimer's disease patients with dementia from cortical sources of resting state eeg rhythms: a study using artificial neural networks
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266711/
https://www.ncbi.nlm.nih.gov/pubmed/28184183
http://dx.doi.org/10.3389/fnins.2016.00604
work_keys_str_mv AT triggianiantonioi classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT bevilacquavitoantonio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT brunettiantonio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT lizioroberta classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT tattoligiacomo classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT cassanofabio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT soricelliandrea classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT ferriraffaele classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT nobiliflavio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT gesualdoloreto classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT barullimariar classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT tortellirosanna classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT cardinalivalentina classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT gianniniantonio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT spagnolopantaleo classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT armenisesilvia classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT stocchifabrizio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT buenzagrazia classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT scianaticogaetano classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT logroscinogiancarlo classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT lacidognagiordano classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT orzifrancesco classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT buttinellicarla classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT giubileifranco classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT delpercioclaudio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT frisonigiovannib classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks
AT babiloniclaudio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks