Cargando…
Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks
Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eye...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266711/ https://www.ncbi.nlm.nih.gov/pubmed/28184183 http://dx.doi.org/10.3389/fnins.2016.00604 |
_version_ | 1782500497619419136 |
---|---|
author | Triggiani, Antonio I. Bevilacqua, Vitoantonio Brunetti, Antonio Lizio, Roberta Tattoli, Giacomo Cassano, Fabio Soricelli, Andrea Ferri, Raffaele Nobili, Flavio Gesualdo, Loreto Barulli, Maria R. Tortelli, Rosanna Cardinali, Valentina Giannini, Antonio Spagnolo, Pantaleo Armenise, Silvia Stocchi, Fabrizio Buenza, Grazia Scianatico, Gaetano Logroscino, Giancarlo Lacidogna, Giordano Orzi, Francesco Buttinelli, Carla Giubilei, Franco Del Percio, Claudio Frisoni, Giovanni B. Babiloni, Claudio |
author_facet | Triggiani, Antonio I. Bevilacqua, Vitoantonio Brunetti, Antonio Lizio, Roberta Tattoli, Giacomo Cassano, Fabio Soricelli, Andrea Ferri, Raffaele Nobili, Flavio Gesualdo, Loreto Barulli, Maria R. Tortelli, Rosanna Cardinali, Valentina Giannini, Antonio Spagnolo, Pantaleo Armenise, Silvia Stocchi, Fabrizio Buenza, Grazia Scianatico, Gaetano Logroscino, Giancarlo Lacidogna, Giordano Orzi, Francesco Buttinelli, Carla Giubilei, Franco Del Percio, Claudio Frisoni, Giovanni B. Babiloni, Claudio |
author_sort | Triggiani, Antonio I. |
collection | PubMed |
description | Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2–4 Hz), theta (4–8 Hz Hz), alpha1 (8–10.5 Hz), and alpha2 (10.5–13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification. |
format | Online Article Text |
id | pubmed-5266711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52667112017-02-09 Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks Triggiani, Antonio I. Bevilacqua, Vitoantonio Brunetti, Antonio Lizio, Roberta Tattoli, Giacomo Cassano, Fabio Soricelli, Andrea Ferri, Raffaele Nobili, Flavio Gesualdo, Loreto Barulli, Maria R. Tortelli, Rosanna Cardinali, Valentina Giannini, Antonio Spagnolo, Pantaleo Armenise, Silvia Stocchi, Fabrizio Buenza, Grazia Scianatico, Gaetano Logroscino, Giancarlo Lacidogna, Giordano Orzi, Francesco Buttinelli, Carla Giubilei, Franco Del Percio, Claudio Frisoni, Giovanni B. Babiloni, Claudio Front Neurosci Neuroscience Previous evidence showed a 75.5% best accuracy in the classification of 120 Alzheimer's disease (AD) patients with dementia and 100 matched normal elderly (Nold) subjects based on cortical source current density and linear lagged connectivity estimated by eLORETA freeware from resting state eyes-closed electroencephalographic (rsEEG) rhythms (Babiloni et al., 2016a). Specifically, that accuracy was reached using the ratio between occipital delta and alpha1 current density for a linear univariate classifier (receiver operating characteristic curves). Here we tested an innovative approach based on an artificial neural network (ANN) classifier from the same database of rsEEG markers. Frequency bands of interest were delta (2–4 Hz), theta (4–8 Hz Hz), alpha1 (8–10.5 Hz), and alpha2 (10.5–13 Hz). ANN classification showed an accuracy of 77% using the most 4 discriminative rsEEG markers of source current density (parietal theta/alpha 1, temporal theta/alpha 1, occipital theta/alpha 1, and occipital delta/alpha 1). It also showed an accuracy of 72% using the most 4 discriminative rsEEG markers of source lagged linear connectivity (inter-hemispherical occipital delta/alpha 2, intra-hemispherical right parietal-limbic alpha 1, intra-hemispherical left occipital-temporal theta/alpha 1, intra-hemispherical right occipital-temporal theta/alpha 1). With these 8 markers combined, an accuracy of at least 76% was reached. Interestingly, this accuracy based on 8 (linear) rsEEG markers as inputs to ANN was similar to that obtained with a single rsEEG marker (Babiloni et al., 2016a), thus unveiling their information redundancy for classification purposes. In future AD studies, inputs to ANNs should include other classes of independent linear (i.e., directed transfer function) and non-linear (i.e., entropy) rsEEG markers to improve the classification. Frontiers Media S.A. 2017-01-26 /pmc/articles/PMC5266711/ /pubmed/28184183 http://dx.doi.org/10.3389/fnins.2016.00604 Text en Copyright © 2017 Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Soricelli, Ferri, Nobili, Gesualdo, Barulli, Tortelli, Cardinali, Giannini, Spagnolo, Armenise, Stocchi, Buenza, Scianatico, Logroscino, Lacidogna, Orzi, Buttinelli, Giubilei, Del Percio, Frisoni and Babiloni. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Triggiani, Antonio I. Bevilacqua, Vitoantonio Brunetti, Antonio Lizio, Roberta Tattoli, Giacomo Cassano, Fabio Soricelli, Andrea Ferri, Raffaele Nobili, Flavio Gesualdo, Loreto Barulli, Maria R. Tortelli, Rosanna Cardinali, Valentina Giannini, Antonio Spagnolo, Pantaleo Armenise, Silvia Stocchi, Fabrizio Buenza, Grazia Scianatico, Gaetano Logroscino, Giancarlo Lacidogna, Giordano Orzi, Francesco Buttinelli, Carla Giubilei, Franco Del Percio, Claudio Frisoni, Giovanni B. Babiloni, Claudio Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks |
title | Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks |
title_full | Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks |
title_fullStr | Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks |
title_full_unstemmed | Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks |
title_short | Classification of Healthy Subjects and Alzheimer's Disease Patients with Dementia from Cortical Sources of Resting State EEG Rhythms: A Study Using Artificial Neural Networks |
title_sort | classification of healthy subjects and alzheimer's disease patients with dementia from cortical sources of resting state eeg rhythms: a study using artificial neural networks |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266711/ https://www.ncbi.nlm.nih.gov/pubmed/28184183 http://dx.doi.org/10.3389/fnins.2016.00604 |
work_keys_str_mv | AT triggianiantonioi classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT bevilacquavitoantonio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT brunettiantonio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT lizioroberta classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT tattoligiacomo classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT cassanofabio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT soricelliandrea classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT ferriraffaele classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT nobiliflavio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT gesualdoloreto classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT barullimariar classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT tortellirosanna classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT cardinalivalentina classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT gianniniantonio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT spagnolopantaleo classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT armenisesilvia classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT stocchifabrizio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT buenzagrazia classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT scianaticogaetano classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT logroscinogiancarlo classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT lacidognagiordano classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT orzifrancesco classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT buttinellicarla classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT giubileifranco classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT delpercioclaudio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT frisonigiovannib classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks AT babiloniclaudio classificationofhealthysubjectsandalzheimersdiseasepatientswithdementiafromcorticalsourcesofrestingstateeegrhythmsastudyusingartificialneuralnetworks |