Cargando…
Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom
Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266747/ https://www.ncbi.nlm.nih.gov/pubmed/28184232 http://dx.doi.org/10.3389/fpls.2017.00066 |
_version_ | 1782500505848643584 |
---|---|
author | Ma, Yuling Yan, Chenchao Li, Huimin Wu, Wentao Liu, Yaxue Wang, Yuqian Chen, Qin Ma, Haoli |
author_facet | Ma, Yuling Yan, Chenchao Li, Huimin Wu, Wentao Liu, Yaxue Wang, Yuqian Chen, Qin Ma, Haoli |
author_sort | Ma, Yuling |
collection | PubMed |
description | Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for “classical” and “chimeric” family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many “ancient” AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm. |
format | Online Article Text |
id | pubmed-5266747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52667472017-02-09 Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom Ma, Yuling Yan, Chenchao Li, Huimin Wu, Wentao Liu, Yaxue Wang, Yuqian Chen, Qin Ma, Haoli Front Plant Sci Plant Science Arabinogalactan proteins (AGPs) are a family of extracellular glycoproteins implicated in plant growth and development. With a rapid growth in the number of genomes sequenced in many plant species, the family members of AGPs can now be predicted to facilitate functional investigation. Building upon previous advances in identifying Arabidopsis AGPs, an integrated strategy of systematical AGP screening for “classical” and “chimeric” family members is proposed in this study. A Python script named Finding-AGP is compiled to find AGP-like sequences and filter AGP candidates under the given thresholds. The primary screening of classical AGPs, Lys-rich classical AGPs, AGP-extensin hybrids, and non-classical AGPs was performed using the existence of signal peptides as a necessary requirement, and BLAST searches were conducted mainly for fasciclin-like, phytocyanin-like and xylogen-like AGPs. Then glycomodule index and partial PAST (Pro, Ala, Ser, and Thr) percentage are adopted to identify AGP candidates. The integrated strategy successfully discovered AGP gene families in 47 plant species and the main results are summarized as follows: (i) AGPs are abundant in angiosperms and many “ancient” AGPs with Ser-Pro repeats are found in Chlamydomonas reinhardtii; (ii) Classical AGPs, AG-peptides, and Lys-rich classical AGPs first emerged in Physcomitrella patens, Selaginella moellendorffii, and Picea abies, respectively; (iii) Nine subfamilies of chimeric AGPs are introduced as newly identified chimeric subfamilies similar to fasciclin-like, phytocyanin-like, and xylogen-like AGPs; (iv) The length and amino acid composition of Lys-rich domains are largely variable, indicating an insertion/deletion model during evolution. Our findings provide not only a powerful means to identify AGP gene families but also probable explanations of AGPs in maintaining the plant cell wall and transducing extracellular signals into the cytoplasm. Frontiers Media S.A. 2017-01-26 /pmc/articles/PMC5266747/ /pubmed/28184232 http://dx.doi.org/10.3389/fpls.2017.00066 Text en Copyright © 2017 Ma, Yan, Li, Wu, Liu, Wang, Chen and Ma. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Ma, Yuling Yan, Chenchao Li, Huimin Wu, Wentao Liu, Yaxue Wang, Yuqian Chen, Qin Ma, Haoli Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom |
title | Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom |
title_full | Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom |
title_fullStr | Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom |
title_full_unstemmed | Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom |
title_short | Bioinformatics Prediction and Evolution Analysis of Arabinogalactan Proteins in the Plant Kingdom |
title_sort | bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266747/ https://www.ncbi.nlm.nih.gov/pubmed/28184232 http://dx.doi.org/10.3389/fpls.2017.00066 |
work_keys_str_mv | AT mayuling bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT yanchenchao bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT lihuimin bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT wuwentao bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT liuyaxue bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT wangyuqian bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT chenqin bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom AT mahaoli bioinformaticspredictionandevolutionanalysisofarabinogalactanproteinsintheplantkingdom |