Cargando…
Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
In this paper, we present the best possible parameters [Formula: see text] and [Formula: see text] such that the double inequality [Formula: see text] holds for all [Formula: see text] and [Formula: see text] with [Formula: see text] , and we provide new bounds for the complete elliptic integral [Fo...
Autores principales: | Zhao, Tie-Hong, Chu, Yu-Ming, Zhang, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266785/ https://www.ncbi.nlm.nih.gov/pubmed/28190939 http://dx.doi.org/10.1186/s13660-017-1300-8 |
Ejemplares similares
-
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
por: Ding, Qing, et al.
Publicado: (2017) -
Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
por: Jiang, Wei-Dong
Publicado: (2013) -
Optimal convex combination bounds of geometric and Neuman means for Toader-type mean
por: Yang, Yue-Ying, et al.
Publicado: (2017) -
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
por: Qian, Wei-Mao, et al.
Publicado: (2017) -
Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means
por: Xu, Hui-Zuo, et al.
Publicado: (2018)