Cargando…
A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study
BACKGROUND: Western Cambodia is the epicentre of Plasmodium falciparum multidrug resistance and is facing high rates of dihydroartemisinin–piperaquine treatment failures. Genetic tools to detect the multidrug-resistant parasites are needed. Artemisinin resistance can be tracked using the K13 molecul...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science ;, The Lancet Pub. Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266792/ https://www.ncbi.nlm.nih.gov/pubmed/27818097 http://dx.doi.org/10.1016/S1473-3099(16)30415-7 |
_version_ | 1782500514830745600 |
---|---|
author | Witkowski, Benoit Duru, Valentine Khim, Nimol Ross, Leila S Saintpierre, Benjamin Beghain, Johann Chy, Sophy Kim, Saorin Ke, Sopheakvatey Kloeung, Nimol Eam, Rotha Khean, Chanra Ken, Malen Loch, Kaknika Bouillon, Anthony Domergue, Anais Ma, Laurence Bouchier, Christiane Leang, Rithea Huy, Rekol Nuel, Grégory Barale, Jean-Christophe Legrand, Eric Ringwald, Pascal Fidock, David A Mercereau-Puijalon, Odile Ariey, Frédéric Ménard, Didier |
author_facet | Witkowski, Benoit Duru, Valentine Khim, Nimol Ross, Leila S Saintpierre, Benjamin Beghain, Johann Chy, Sophy Kim, Saorin Ke, Sopheakvatey Kloeung, Nimol Eam, Rotha Khean, Chanra Ken, Malen Loch, Kaknika Bouillon, Anthony Domergue, Anais Ma, Laurence Bouchier, Christiane Leang, Rithea Huy, Rekol Nuel, Grégory Barale, Jean-Christophe Legrand, Eric Ringwald, Pascal Fidock, David A Mercereau-Puijalon, Odile Ariey, Frédéric Ménard, Didier |
author_sort | Witkowski, Benoit |
collection | PubMed |
description | BACKGROUND: Western Cambodia is the epicentre of Plasmodium falciparum multidrug resistance and is facing high rates of dihydroartemisinin–piperaquine treatment failures. Genetic tools to detect the multidrug-resistant parasites are needed. Artemisinin resistance can be tracked using the K13 molecular marker, but no marker exists for piperaquine resistance. We aimed to identify genetic markers of piperaquine resistance and study their association with dihydroartemisinin–piperaquine treatment failures. METHODS: We obtained blood samples from Cambodian patients infected with P falciparum and treated with dihydroartemisinin–piperaquine. Patients were followed up for 42 days during the years 2009–15. We established in-vitro and ex-vivo susceptibility profiles for a subset using piperaquine survival assays. We determined whole-genome sequences by Illumina paired-reads sequencing, copy number variations by qPCR, RNA concentrations by qRT-PCR, and protein concentrations by immunoblotting. Fisher’s exact and non-parametric Wilcoxon rank-sum tests were used to identify significant differences in single-nucleotide polymorphisms or copy number variants, respectively, for differential distribution between piperaquine-resistant and piperaquine-sensitive parasite lines. FINDINGS: Whole-genome exon sequence analysis of 31 culture-adapted parasite lines associated amplification of the plasmepsin 2–plasmepsin 3 gene cluster with in-vitro piperaquine resistance. Ex-vivo piperaquine survival assay profiles of 134 isolates correlated with plasmepsin 2 gene copy number. In 725 patients treated with dihydroartemisinin–piperaquine, multicopy plasmepsin 2 in the sample collected before treatment was associated with an adjusted hazard ratio (aHR) for treatment failure of 20·4 (95% CI 9·1–45·5, p<0·0001). Multicopy plasmepsin 2 predicted dihydroartemisinin–piperaquine failures with 0·94 (95% CI 0·88–0·98) sensitivity and 0·77 (0·74–0·81) specificity. Analysis of samples collected across the country from 2002 to 2015 showed that the geographical and temporal increase of the proportion of multicopy plasmepsin 2 parasites was highly correlated with increasing dihydroartemisinin–piperaquine treatment failure rates (r=0·89 [95% CI 0·77–0·95], p<0·0001, Spearman’s coefficient of rank correlation). Dihydroartemisinin–piperaquine efficacy at day 42 fell below 90% when the proportion of multicopy plasmepsin 2 parasites exceeded 22%. INTERPRETATION: Piperaquine resistance in Cambodia is strongly associated with amplification of plasmepsin 2–3, encoding haemoglobin-digesting proteases, regardless of the location. Multicopy plasmepsin 2 constitutes a surrogate molecular marker to track piperaquine resistance. A molecular toolkit combining plasmepsin 2 with K13 and mdr1 monitoring should provide timely information for antimalarial treatment and containment policies. FUNDING: Institut Pasteur in Cambodia, Institut Pasteur Paris, National Institutes of Health, WHO, Agence Nationale de la Recherche, Investissement d’Avenir programme, Laboratoire d’Excellence Integrative “Biology of Emerging Infectious Diseases”. |
format | Online Article Text |
id | pubmed-5266792 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier Science ;, The Lancet Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52667922017-02-01 A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study Witkowski, Benoit Duru, Valentine Khim, Nimol Ross, Leila S Saintpierre, Benjamin Beghain, Johann Chy, Sophy Kim, Saorin Ke, Sopheakvatey Kloeung, Nimol Eam, Rotha Khean, Chanra Ken, Malen Loch, Kaknika Bouillon, Anthony Domergue, Anais Ma, Laurence Bouchier, Christiane Leang, Rithea Huy, Rekol Nuel, Grégory Barale, Jean-Christophe Legrand, Eric Ringwald, Pascal Fidock, David A Mercereau-Puijalon, Odile Ariey, Frédéric Ménard, Didier Lancet Infect Dis Articles BACKGROUND: Western Cambodia is the epicentre of Plasmodium falciparum multidrug resistance and is facing high rates of dihydroartemisinin–piperaquine treatment failures. Genetic tools to detect the multidrug-resistant parasites are needed. Artemisinin resistance can be tracked using the K13 molecular marker, but no marker exists for piperaquine resistance. We aimed to identify genetic markers of piperaquine resistance and study their association with dihydroartemisinin–piperaquine treatment failures. METHODS: We obtained blood samples from Cambodian patients infected with P falciparum and treated with dihydroartemisinin–piperaquine. Patients were followed up for 42 days during the years 2009–15. We established in-vitro and ex-vivo susceptibility profiles for a subset using piperaquine survival assays. We determined whole-genome sequences by Illumina paired-reads sequencing, copy number variations by qPCR, RNA concentrations by qRT-PCR, and protein concentrations by immunoblotting. Fisher’s exact and non-parametric Wilcoxon rank-sum tests were used to identify significant differences in single-nucleotide polymorphisms or copy number variants, respectively, for differential distribution between piperaquine-resistant and piperaquine-sensitive parasite lines. FINDINGS: Whole-genome exon sequence analysis of 31 culture-adapted parasite lines associated amplification of the plasmepsin 2–plasmepsin 3 gene cluster with in-vitro piperaquine resistance. Ex-vivo piperaquine survival assay profiles of 134 isolates correlated with plasmepsin 2 gene copy number. In 725 patients treated with dihydroartemisinin–piperaquine, multicopy plasmepsin 2 in the sample collected before treatment was associated with an adjusted hazard ratio (aHR) for treatment failure of 20·4 (95% CI 9·1–45·5, p<0·0001). Multicopy plasmepsin 2 predicted dihydroartemisinin–piperaquine failures with 0·94 (95% CI 0·88–0·98) sensitivity and 0·77 (0·74–0·81) specificity. Analysis of samples collected across the country from 2002 to 2015 showed that the geographical and temporal increase of the proportion of multicopy plasmepsin 2 parasites was highly correlated with increasing dihydroartemisinin–piperaquine treatment failure rates (r=0·89 [95% CI 0·77–0·95], p<0·0001, Spearman’s coefficient of rank correlation). Dihydroartemisinin–piperaquine efficacy at day 42 fell below 90% when the proportion of multicopy plasmepsin 2 parasites exceeded 22%. INTERPRETATION: Piperaquine resistance in Cambodia is strongly associated with amplification of plasmepsin 2–3, encoding haemoglobin-digesting proteases, regardless of the location. Multicopy plasmepsin 2 constitutes a surrogate molecular marker to track piperaquine resistance. A molecular toolkit combining plasmepsin 2 with K13 and mdr1 monitoring should provide timely information for antimalarial treatment and containment policies. FUNDING: Institut Pasteur in Cambodia, Institut Pasteur Paris, National Institutes of Health, WHO, Agence Nationale de la Recherche, Investissement d’Avenir programme, Laboratoire d’Excellence Integrative “Biology of Emerging Infectious Diseases”. Elsevier Science ;, The Lancet Pub. Group 2017-02 /pmc/articles/PMC5266792/ /pubmed/27818097 http://dx.doi.org/10.1016/S1473-3099(16)30415-7 Text en © 2017 World Health Organization https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Articles Witkowski, Benoit Duru, Valentine Khim, Nimol Ross, Leila S Saintpierre, Benjamin Beghain, Johann Chy, Sophy Kim, Saorin Ke, Sopheakvatey Kloeung, Nimol Eam, Rotha Khean, Chanra Ken, Malen Loch, Kaknika Bouillon, Anthony Domergue, Anais Ma, Laurence Bouchier, Christiane Leang, Rithea Huy, Rekol Nuel, Grégory Barale, Jean-Christophe Legrand, Eric Ringwald, Pascal Fidock, David A Mercereau-Puijalon, Odile Ariey, Frédéric Ménard, Didier A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study |
title | A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study |
title_full | A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study |
title_fullStr | A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study |
title_full_unstemmed | A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study |
title_short | A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype–genotype association study |
title_sort | surrogate marker of piperaquine-resistant plasmodium falciparum malaria: a phenotype–genotype association study |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5266792/ https://www.ncbi.nlm.nih.gov/pubmed/27818097 http://dx.doi.org/10.1016/S1473-3099(16)30415-7 |
work_keys_str_mv | AT witkowskibenoit asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT duruvalentine asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT khimnimol asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT rossleilas asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT saintpierrebenjamin asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT beghainjohann asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT chysophy asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kimsaorin asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kesopheakvatey asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kloeungnimol asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT eamrotha asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kheanchanra asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kenmalen asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT lochkaknika asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT bouillonanthony asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT domergueanais asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT malaurence asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT bouchierchristiane asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT leangrithea asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT huyrekol asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT nuelgregory asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT baralejeanchristophe asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT legranderic asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT ringwaldpascal asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT fidockdavida asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT mercereaupuijalonodile asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT arieyfrederic asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT menarddidier asurrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT witkowskibenoit surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT duruvalentine surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT khimnimol surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT rossleilas surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT saintpierrebenjamin surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT beghainjohann surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT chysophy surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kimsaorin surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kesopheakvatey surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kloeungnimol surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT eamrotha surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kheanchanra surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT kenmalen surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT lochkaknika surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT bouillonanthony surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT domergueanais surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT malaurence surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT bouchierchristiane surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT leangrithea surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT huyrekol surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT nuelgregory surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT baralejeanchristophe surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT legranderic surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT ringwaldpascal surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT fidockdavida surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT mercereaupuijalonodile surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT arieyfrederic surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy AT menarddidier surrogatemarkerofpiperaquineresistantplasmodiumfalciparummalariaaphenotypegenotypeassociationstudy |