Cargando…
Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport
Pregnant women are at high risk for infection by pathogens. Vertical transmission of infectious agents, such as Zika, hepatitis B, and cytomegalovirus during pregnancy, remains a public health problem, associated with dire outcomes for the neonate. Thus, a safe prophylactic and therapeutic approach...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267080/ https://www.ncbi.nlm.nih.gov/pubmed/28168206 http://dx.doi.org/10.1155/2017/7373196 |
_version_ | 1782500577222066176 |
---|---|
author | Xu, Yanqun Mahmood, Iftekhar Zhong, Lilin Zhang, Pei Struble, Evi B. |
author_facet | Xu, Yanqun Mahmood, Iftekhar Zhong, Lilin Zhang, Pei Struble, Evi B. |
author_sort | Xu, Yanqun |
collection | PubMed |
description | Pregnant women are at high risk for infection by pathogens. Vertical transmission of infectious agents, such as Zika, hepatitis B, and cytomegalovirus during pregnancy, remains a public health problem, associated with dire outcomes for the neonate. Thus, a safe prophylactic and therapeutic approach for protecting the mother and the neonate from infections remains a high priority. Our work is focused on better understanding the safety and efficacy determinants of IgG antibody preparations when used during pregnancy to benefit the mother and her baby. Using pregnant guinea pigs, we demonstrated that biodistribution of administered IgG to the fetus increases with gestation and results in lower maternal and higher fetal antibody concentrations as pregnancy progresses. Data suggests that partition of antibody immunotherapy to the fetal compartment may contribute to a lower maternal exposure (as measured by the AUC) and a shorter mean residence time of the IgG therapeutic at the end of pregnancy compared to nonpregnant age-matched controls, irrespective of the administered dose. Our studies provide insights on the importance of selecting an efficacious dose in pregnancy that takes into account IgG biodistribution to the fetus. The use of appropriate animal models of placental transfer and infectious disease during pregnancy would facilitate pharmacokinetic modeling to derive a starting dose in clinical trials. |
format | Online Article Text |
id | pubmed-5267080 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-52670802017-02-06 Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport Xu, Yanqun Mahmood, Iftekhar Zhong, Lilin Zhang, Pei Struble, Evi B. J Immunol Res Research Article Pregnant women are at high risk for infection by pathogens. Vertical transmission of infectious agents, such as Zika, hepatitis B, and cytomegalovirus during pregnancy, remains a public health problem, associated with dire outcomes for the neonate. Thus, a safe prophylactic and therapeutic approach for protecting the mother and the neonate from infections remains a high priority. Our work is focused on better understanding the safety and efficacy determinants of IgG antibody preparations when used during pregnancy to benefit the mother and her baby. Using pregnant guinea pigs, we demonstrated that biodistribution of administered IgG to the fetus increases with gestation and results in lower maternal and higher fetal antibody concentrations as pregnancy progresses. Data suggests that partition of antibody immunotherapy to the fetal compartment may contribute to a lower maternal exposure (as measured by the AUC) and a shorter mean residence time of the IgG therapeutic at the end of pregnancy compared to nonpregnant age-matched controls, irrespective of the administered dose. Our studies provide insights on the importance of selecting an efficacious dose in pregnancy that takes into account IgG biodistribution to the fetus. The use of appropriate animal models of placental transfer and infectious disease during pregnancy would facilitate pharmacokinetic modeling to derive a starting dose in clinical trials. Hindawi Publishing Corporation 2017 2017-01-11 /pmc/articles/PMC5267080/ /pubmed/28168206 http://dx.doi.org/10.1155/2017/7373196 Text en Copyright © 2017 Yanqun Xu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Xu, Yanqun Mahmood, Iftekhar Zhong, Lilin Zhang, Pei Struble, Evi B. Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport |
title | Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport |
title_full | Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport |
title_fullStr | Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport |
title_full_unstemmed | Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport |
title_short | Passive Immunoprophylaxis for the Protection of the Mother and Her Baby: Insights from In Vivo Models of Antibody Transport |
title_sort | passive immunoprophylaxis for the protection of the mother and her baby: insights from in vivo models of antibody transport |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267080/ https://www.ncbi.nlm.nih.gov/pubmed/28168206 http://dx.doi.org/10.1155/2017/7373196 |
work_keys_str_mv | AT xuyanqun passiveimmunoprophylaxisfortheprotectionofthemotherandherbabyinsightsfrominvivomodelsofantibodytransport AT mahmoodiftekhar passiveimmunoprophylaxisfortheprotectionofthemotherandherbabyinsightsfrominvivomodelsofantibodytransport AT zhonglilin passiveimmunoprophylaxisfortheprotectionofthemotherandherbabyinsightsfrominvivomodelsofantibodytransport AT zhangpei passiveimmunoprophylaxisfortheprotectionofthemotherandherbabyinsightsfrominvivomodelsofantibodytransport AT strubleevib passiveimmunoprophylaxisfortheprotectionofthemotherandherbabyinsightsfrominvivomodelsofantibodytransport |