Cargando…

Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress

BACKGROUND: Despite the heat-related physiology and heat-shock proteins in maize have been extensively studied, little is known about the transcriptome profiling of how the maize varieties with different genotypes responding to high temperatures. Seedling mortality of Xiantian 5 (XT) is significantl...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Jiang, Yan, Baiyuan, Lou, Xuping, Ma, Huasheng, Ruan, Songlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267381/
https://www.ncbi.nlm.nih.gov/pubmed/28122503
http://dx.doi.org/10.1186/s12870-017-0973-y
Descripción
Sumario:BACKGROUND: Despite the heat-related physiology and heat-shock proteins in maize have been extensively studied, little is known about the transcriptome profiling of how the maize varieties with different genotypes responding to high temperatures. Seedling mortality of Xiantian 5 (XT) is significantly lower than that of Zhefengtian (ZF) when exposed to high temperature (42 °C for 6 h) and followed by a recovery growth (25 °C for one week). Therefore, we performed a transcriptome analysis using the total RNA extracted from the leaves of XT and ZF that were previously subjected to heat stress at 42 °C for 0 h, 0.5 h, and 3 h, respectively. RESULTS: A total of 516 commonly up-regulated and 1,261 commonly down-regulated genes were identified among XT/ZF, XT0.5/ZF0.5 and XT3/ZF3 using transcriptome analysis. Gene Ontology classification of the 516 up-regulated genes showed that their encoded proteins were significantly assigned to 18 cellular components, and were classified into 9 functional categories, and were involved in 9 biological processes. Most of proteins encoded by up-regulated genes were localized in chloroplast and its structural components, and involved in multiple biological processes associated with photosynthesis, indicating that these chloroplast proteins play an important role in increasing heat tolerance in sweet maize. While the proteins encoded by 1,261 down-regulated genes were significantly assigned to 31 cellular components, and were classified into 3 functional categories, and were involved in 9 biological processes. Interestingly, these proteins were involved in a series of biological processes from gene expression to translation, suggesting that lowering these processes may contribute to improved heat resistance in sweet maize. The up-regulated genes were identified to be involved in 36 distinct metabolic pathways, of which the most significant ones was secondary metabolite biosynthetic pathway. While the down-regulated genes were identified to be involved in 23 distinct metabolic pathways, of which the most significant ones were found in ribosome. Quantitative real-time PCR analysis demonstrated that 5 genes involved in the biosynthesis of secondary metabolites and photosynthesis in XT have higher abundance than those in ZF, whereas 5 ribosome genes in XT showed lower abundance than those in ZF. In addition, heat-tolerant sweet maize may keep at lower growth level than heat-sensitive one through dowregulating expression of genes related to zeatin and brassinosteroid biosynthesis to better regulate heat stress responses. CONCLUSIONS: Comparative transcriptomic profiling reveals transcriptional alterations in heat-resistant and heat-sensitive sweet maize varieties under heat stress, which provides a new insight into underlying molecular mechanism of maize in response to heat stress. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-017-0973-y) contains supplementary material, which is available to authorized users.