Cargando…

Biomechanical testing of transcapsular meniscal repair

BACKGROUND: All of previous biomechanical studies on meniscal repair have examined the meniscus itself without synovial membrane and capsule, although in the clinical setting, the meniscal repair is generally performed including capsule. Therefore, biomechanical properties of transcapsular meniscal...

Descripción completa

Detalles Bibliográficos
Autores principales: Iuchi, Ryo, Mae, Tatsuo, Shino, Konsei, Matsuo, Tomohiko, Yoshikawa, Hideki, Nakata, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267586/
https://www.ncbi.nlm.nih.gov/pubmed/28124287
http://dx.doi.org/10.1186/s40634-017-0075-7
Descripción
Sumario:BACKGROUND: All of previous biomechanical studies on meniscal repair have examined the meniscus itself without synovial membrane and capsule, although in the clinical setting, the meniscal repair is generally performed including capsule. Therefore, biomechanical properties of transcapsular meniscal repair are unclear. Thus, this study aimed to clarify the biomechanical properties of transcapsular meniscal repair. METHODS: In 70 porcine femur–medial meniscus–tibia complexes with capsules, longitudinal meniscal tears were repaired using different suture techniques (inside-out or all-inside technique), suture methods (vertical or horizontal methods), and numbers of sutures (single or double). A cyclic loading test between 5 and 20 N for 300 cycles was performed followed by a load-to-failure test. RESULTS: Tears repaired by the all-inside technique presented significantly larger widening (0.88 ± 0.38 mm) than those by the inside-out technique (0.51 ± 0.39 mm) during the cyclic loading test (P = 0.035). The horizontal suture presented significantly lower ultimate failure load (62.5 ± 15.5 N) in the all-inside technique than in the vertical suture (79.7 ± 13.0 N; P = 0.018). The stacked suture had a significantly higher failure load (104.6 ± 12.5 N) than the parallel suture (83.3 ± 12.6 N; P = 0.001). Furthermore, the double suture presented significantly higher failure loads (83.3 ± 12.6 N and 104.6 ± 20.4 N) than the single suture with both inside-out (58.8 ± 8.3 N; P = 0.001) and all-inside (79.7 ± 13.0 N; P = 0.022) techniques. CONCLUSIONS: Upon comparison of the suture techniques, the inside-out technique provided a more stable fixation at the repair site than the all-inside technique during the cyclic test. Among the suture methods, the vertical suture had more desirable biomechanical properties than the horizontal suture as demonstrated by smaller widening during the cyclic test and the larger load to failure. The stacked suture created a stronger fixation than the parallel suture. In terms of the number of sutures, the double suture had superior biomechanical properties compared with the single suture.