Cargando…
High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks
The study aimed to determine if computer vision techniques rooted in deep learning can use a small set of radiographs to perform clinically relevant image classification with high fidelity. One thousand eight hundred eighty-five chest radiographs on 909 patients obtained between January 2013 and Jul...
Autores principales: | Rajkomar, Alvin, Lingam, Sneha, Taylor, Andrew G., Blum, Michael, Mongan, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267603/ https://www.ncbi.nlm.nih.gov/pubmed/27730417 http://dx.doi.org/10.1007/s10278-016-9914-9 |
Ejemplares similares
-
Automated detection of IVC filters on radiographs with deep convolutional neural networks
por: Mongan, John, et al.
Publicado: (2022) -
Classification of racehorse limb radiographs using deep convolutional neural networks
por: Costa da Silva, Raniere Gaia, et al.
Publicado: (2023) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Tang, Yu-Xing, et al.
Publicado: (2020) -
Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study
por: Taylor, Andrew G., et al.
Publicado: (2018) -
Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks
por: Moran, Maira, et al.
Publicado: (2021)