Cargando…

Serum adiponectin as a biomarker for in vivo PPARgamma activation and PPARgamma agonist-induced efficacy on insulin sensitization/lipid lowering in rats

BACKGROUND: PPARγ agonists ameliorate insulin resistance and dyslipidemia in type 2 diabetic patients. Adiponectin possesses insulin sensitizing properties, and predicts insulin sensitivity of both glucose and lipid metabolism. In diet-induced insulin resistant rats and ZDF rats, the current studies...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Baichun, Brown, Kathleen K, Chen, Lihong, Carrick, Kevin M, Clifton, Lisa G, McNulty, Judi A, Winegar, Deborah A, Strum, Jay C, Stimpson, Stephen A, Pahel, Gregory L
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC526775/
https://www.ncbi.nlm.nih.gov/pubmed/15491498
http://dx.doi.org/10.1186/1471-2210-4-23
Descripción
Sumario:BACKGROUND: PPARγ agonists ameliorate insulin resistance and dyslipidemia in type 2 diabetic patients. Adiponectin possesses insulin sensitizing properties, and predicts insulin sensitivity of both glucose and lipid metabolism. In diet-induced insulin resistant rats and ZDF rats, the current studies determined the correlation between PPARγ agonist-upregulated fatty acid binding protein(FABP3) mRNA in adipose tissue and PPARγ agonist-elevated serum adiponectin, and the correlation between PPARγ agonist-elevated serum adiponectin and PPARγ agonist-mediated efficacy in insulin sensitization and lipid lowering. RESULTS: Parallel groups of SD rats were fed a high fat/sucrose (HF) diet for 4 weeks. These rats were orally treated for the later 2 weeks with vehicle, either PPARγ agonist GI262570 (0.2–100 mg/kg, Q.D.), or GW347845 (3 mg/kg, B.I.D). Rats on HF diet showed significant increases in postprandial serum triglycerides, free fatty acids (FFA), insulin, and area under curve (AUC) of serum insulin during an oral glucose tolerance test, but showed no change in serum glucose, adiponectin, and glucose AUC. Treatment with GI262570 dose-dependently upregulated adipose FABP3 mRNA, and increased serum adiponectin. There was a positive correlation between adipose FABP3 mRNA and serum adiponectin (r = 0.7350, p < 0.01). GI262570 dose-dependently decreased the diet-induced elevations in triglycerides, FFA, insulin, and insulin AUC. Treatment with GW347845 had similar effects on serum adiponectin and the diet-induced elevations. There were negative correlations for adiponectin versus triglycerides, FFA, insulin, and insulin AUC (For GI262570, r = -0.7486, -0.4581, -0.4379, and -0.3258 respectively, all p < 0.05. For GW347845, r = -0.6370, -0.6877, -0.5512, and -0.3812 respectively, all p < 0.05). In ZDF rats treated with PPARγ agonists pioglitazone (3–30 mg/kg, B.I.D.) or GW347845 (3 mg/kg, B.I.D.), there were also negative correlations for serum adiponectin versus glucose, triglycerides, FFA (for pioglitazone, r = -0.7005, -0.8603, and -0.9288 respectively; for GW347845, r = -0.9721, -0.8483, and -0.9453 respectively, all p < 0.01). CONCLUSIONS: This study demonstrated that (a) PPARγ agonists improved insulin sensitivity and ameliorated dyslipidemia in HF fed rats and ZDF rats, which were correlated with serum adiponectin; (b) Serum adiponectin was positively correlated with adipose FABP3 mRNA in GI262570-treated rats. These data suggest that serum adiponectin can serve as a biomarker for both in vivo PPARγ activation and PPARγ agonist-induced efficacy on insulin resistance and dyslipidemia in rats.