Cargando…
Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data
BACKGROUND: Over 400,000 people across the Americas are thought to have been infected with Zika virus as a consequence of the 2015–2016 Latin American outbreak. Official government-led case count data in Latin America are typically delayed by several weeks, making it difficult to track the disease i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5268704/ https://www.ncbi.nlm.nih.gov/pubmed/28085877 http://dx.doi.org/10.1371/journal.pntd.0005295 |
_version_ | 1782500866114191360 |
---|---|
author | McGough, Sarah F. Brownstein, John S. Hawkins, Jared B. Santillana, Mauricio |
author_facet | McGough, Sarah F. Brownstein, John S. Hawkins, Jared B. Santillana, Mauricio |
author_sort | McGough, Sarah F. |
collection | PubMed |
description | BACKGROUND: Over 400,000 people across the Americas are thought to have been infected with Zika virus as a consequence of the 2015–2016 Latin American outbreak. Official government-led case count data in Latin America are typically delayed by several weeks, making it difficult to track the disease in a timely manner. Thus, timely disease tracking systems are needed to design and assess interventions to mitigate disease transmission. METHODOLOGY/PRINCIPAL FINDINGS: We combined information from Zika-related Google searches, Twitter microblogs, and the HealthMap digital surveillance system with historical Zika suspected case counts to track and predict estimates of suspected weekly Zika cases during the 2015–2016 Latin American outbreak, up to three weeks ahead of the publication of official case data. We evaluated the predictive power of these data and used a dynamic multivariable approach to retrospectively produce predictions of weekly suspected cases for five countries: Colombia, El Salvador, Honduras, Venezuela, and Martinique. Models that combined Google (and Twitter data where available) with autoregressive information showed the best out-of-sample predictive accuracy for 1-week ahead predictions, whereas models that used only Google and Twitter typically performed best for 2- and 3-week ahead predictions. SIGNIFICANCE: Given the significant delay in the release of official government-reported Zika case counts, we show that these Internet-based data streams can be used as timely and complementary ways to assess the dynamics of the outbreak. |
format | Online Article Text |
id | pubmed-5268704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52687042017-02-06 Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data McGough, Sarah F. Brownstein, John S. Hawkins, Jared B. Santillana, Mauricio PLoS Negl Trop Dis Research Article BACKGROUND: Over 400,000 people across the Americas are thought to have been infected with Zika virus as a consequence of the 2015–2016 Latin American outbreak. Official government-led case count data in Latin America are typically delayed by several weeks, making it difficult to track the disease in a timely manner. Thus, timely disease tracking systems are needed to design and assess interventions to mitigate disease transmission. METHODOLOGY/PRINCIPAL FINDINGS: We combined information from Zika-related Google searches, Twitter microblogs, and the HealthMap digital surveillance system with historical Zika suspected case counts to track and predict estimates of suspected weekly Zika cases during the 2015–2016 Latin American outbreak, up to three weeks ahead of the publication of official case data. We evaluated the predictive power of these data and used a dynamic multivariable approach to retrospectively produce predictions of weekly suspected cases for five countries: Colombia, El Salvador, Honduras, Venezuela, and Martinique. Models that combined Google (and Twitter data where available) with autoregressive information showed the best out-of-sample predictive accuracy for 1-week ahead predictions, whereas models that used only Google and Twitter typically performed best for 2- and 3-week ahead predictions. SIGNIFICANCE: Given the significant delay in the release of official government-reported Zika case counts, we show that these Internet-based data streams can be used as timely and complementary ways to assess the dynamics of the outbreak. Public Library of Science 2017-01-13 /pmc/articles/PMC5268704/ /pubmed/28085877 http://dx.doi.org/10.1371/journal.pntd.0005295 Text en © 2017 McGough et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article McGough, Sarah F. Brownstein, John S. Hawkins, Jared B. Santillana, Mauricio Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data |
title | Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data |
title_full | Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data |
title_fullStr | Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data |
title_full_unstemmed | Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data |
title_short | Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data |
title_sort | forecasting zika incidence in the 2016 latin america outbreak combining traditional disease surveillance with search, social media, and news report data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5268704/ https://www.ncbi.nlm.nih.gov/pubmed/28085877 http://dx.doi.org/10.1371/journal.pntd.0005295 |
work_keys_str_mv | AT mcgoughsarahf forecastingzikaincidenceinthe2016latinamericaoutbreakcombiningtraditionaldiseasesurveillancewithsearchsocialmediaandnewsreportdata AT brownsteinjohns forecastingzikaincidenceinthe2016latinamericaoutbreakcombiningtraditionaldiseasesurveillancewithsearchsocialmediaandnewsreportdata AT hawkinsjaredb forecastingzikaincidenceinthe2016latinamericaoutbreakcombiningtraditionaldiseasesurveillancewithsearchsocialmediaandnewsreportdata AT santillanamauricio forecastingzikaincidenceinthe2016latinamericaoutbreakcombiningtraditionaldiseasesurveillancewithsearchsocialmediaandnewsreportdata |