Cargando…
Detecting the causality influence of individual meteorological factors on local PM(2.5) concentration in the Jing-Jin-Ji region
Due to complicated interactions in the atmospheric environment, quantifying the influence of individual meteorological factors on local PM(2.5) concentration remains challenging. The Beijing-Tianjin-Hebei (short for Jing-Jin-Ji) region is infamous for its serious air pollution. To improve regional a...
Autores principales: | Chen, Ziyue, Cai, Jun, Gao, Bingbo, Xu, Bing, Dai, Shuang, He, Bin, Xie, Xiaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269577/ https://www.ncbi.nlm.nih.gov/pubmed/28128221 http://dx.doi.org/10.1038/srep40735 |
Ejemplares similares
-
Time series-based PM(2.5) concentration prediction in Jing-Jin-Ji area using machine learning algorithm models
por: Ma, Xin, et al.
Publicado: (2022) -
The impact of new transportation modes on population distribution in Jing-Jin-Ji region of China
por: Wang, Lizhe, et al.
Publicado: (2018) -
Simulating highly disturbed vegetation distribution: the case of China’s Jing-Jin-Ji region
por: Yi, Sangui, et al.
Publicado: (2020) -
Yi Jin Jing
por: Jiménez Martín, Pedro J. -
The future urban growth under policies and its ecological effect in the Jing-Jin-Ji area, China
por: Li, Nana, et al.
Publicado: (2021)