Cargando…
Acoustic Properties Predict Perception of Unfamiliar Dutch Vowels by Adult Australian English and Peruvian Spanish Listeners
Research suggests that the size of the second language (L2) vowel inventory relative to the native (L1) inventory may affect the discrimination and acquisition of L2 vowels. Models of non-native and L2 vowel perception stipulate that naïve listeners' non-native and L2 perceptual patterns may be...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269591/ https://www.ncbi.nlm.nih.gov/pubmed/28191001 http://dx.doi.org/10.3389/fpsyg.2017.00052 |
Sumario: | Research suggests that the size of the second language (L2) vowel inventory relative to the native (L1) inventory may affect the discrimination and acquisition of L2 vowels. Models of non-native and L2 vowel perception stipulate that naïve listeners' non-native and L2 perceptual patterns may be predicted by the relationship in vowel inventory size between the L1 and the L2. Specifically, having a smaller L1 vowel inventory than the L2 impedes L2 vowel perception, while having a larger one often facilitates it. However, the Second Language Linguistic Perception (L2LP) model specifies that it is the L1–L2 acoustic relationships that predict non-native and L2 vowel perception, regardless of L1 vowel inventory. To test the effects of vowel inventory size vs. acoustic properties on non-native vowel perception, we compared XAB discrimination and categorization of five Dutch vowel contrasts between monolinguals whose L1 contains more (Australian English) or fewer (Peruvian Spanish) vowels than Dutch. No effect of language background was found, suggesting that L1 inventory size alone did not account for performance. Instead, participants in both language groups were more accurate in discriminating contrasts that were predicted to be perceptually easy based on L1–L2 acoustic relationships, and were less accurate for contrasts likewise predicted to be difficult. Further, cross-language discriminant analyses predicted listeners' categorization patterns which in turn predicted listeners' discrimination difficulty. Our results show that listeners with larger vowel inventories appear to activate multiple native categories as reflected in lower accuracy scores for some Dutch vowels, while listeners with a smaller vowel inventory seem to have higher accuracy scores for those same vowels. In line with the L2LP model, these findings demonstrate that L1–L2 acoustic relationships better predict non-native and L2 perceptual performance and that inventory size alone is not a good predictor for cross-language perceptual difficulties. |
---|