Cargando…
Low level of swiprosin-1/EFhd2 in vestibular nuclei of spontaneously hypersensitive motion sickness mice
Susceptibility to motion sickness (MS) varies considerably among humans. However, the cause of such variation is unclear. Here, we used a classical genetic approach to obtain mouse strains highly sensitive and resistant to MS (SMS and RMS). Proteomics analysis revealed substantially lower swiprosin-...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269593/ https://www.ncbi.nlm.nih.gov/pubmed/28128226 http://dx.doi.org/10.1038/srep40986 |
Sumario: | Susceptibility to motion sickness (MS) varies considerably among humans. However, the cause of such variation is unclear. Here, we used a classical genetic approach to obtain mouse strains highly sensitive and resistant to MS (SMS and RMS). Proteomics analysis revealed substantially lower swiprosin-1 expression in SMS mouse brains. Inducing MS via rotary stimulation decreased swiprosin-1 in the mouse brains. Swiprosin-1 knockout mice were much more sensitive to motion disturbance. Immunohistochemistry revealed strong swiprosin-1 expression in the vestibular nuclei (VN). Over-expressing swiprosin-1 in the VN of SMS mice decreased MS susceptibility. Down-regulating swiprosin-1 in the VN of RMS mice by RNAi increased MS susceptibility. Additional in vivo experiments revealed decreased swiprosin-1 expression by glutamate via the NMDA receptor. Glutamate increased neuronal excitability in SMS or swiprosin-1 knockout mice more prominently than in RMS or wild-type mice. These results indicate that swiprosin-1 in the VN is a critical determinant of the susceptibility to MS. |
---|