Cargando…
Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity
Among diverse methods for drag reduction, superhydrophobicity has shown considerable promise because it can produce a shear-free boundary without energy input. However, the plastron experiences a limited lifetime due to the dissolution of trapped air from surface cavities, into the surrounding water...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269735/ https://www.ncbi.nlm.nih.gov/pubmed/28128296 http://dx.doi.org/10.1038/srep41448 |
_version_ | 1782501051686977536 |
---|---|
author | Hokmabad, Babak Vajdi Ghaemi, Sina |
author_facet | Hokmabad, Babak Vajdi Ghaemi, Sina |
author_sort | Hokmabad, Babak Vajdi |
collection | PubMed |
description | Among diverse methods for drag reduction, superhydrophobicity has shown considerable promise because it can produce a shear-free boundary without energy input. However, the plastron experiences a limited lifetime due to the dissolution of trapped air from surface cavities, into the surrounding water. The underwater longevity of the plastron, as it is influenced by environmental conditions, such as fine particles suspended in the water, must be studied in order to implement superhydrophobicity in practical applications. We present a proof-of-concept study on the kinetics of air loss from a plastron subjected to a canonical laminar boundary layer at Re(δ) = 1400 and 1800 (based on boundary layer thickness) with and without suspending 2 micron particles with density of 4 Kg/m(3). To monitor the air loss kinetics, we developed an in situ non-invasive optical technique based on total internal reflection at the air-water interface. The shear flow at the wall is characterized by high resolution particle image velocimetry technique. Our results demonstrate that the flow-induced particle-plastron collision shortens the lifetime of the plastron by ~50%. The underlying physics are discussed and a theoretical analysis is conducted to further characterize the mass transfer mechanisms. |
format | Online Article Text |
id | pubmed-5269735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52697352017-02-01 Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity Hokmabad, Babak Vajdi Ghaemi, Sina Sci Rep Article Among diverse methods for drag reduction, superhydrophobicity has shown considerable promise because it can produce a shear-free boundary without energy input. However, the plastron experiences a limited lifetime due to the dissolution of trapped air from surface cavities, into the surrounding water. The underwater longevity of the plastron, as it is influenced by environmental conditions, such as fine particles suspended in the water, must be studied in order to implement superhydrophobicity in practical applications. We present a proof-of-concept study on the kinetics of air loss from a plastron subjected to a canonical laminar boundary layer at Re(δ) = 1400 and 1800 (based on boundary layer thickness) with and without suspending 2 micron particles with density of 4 Kg/m(3). To monitor the air loss kinetics, we developed an in situ non-invasive optical technique based on total internal reflection at the air-water interface. The shear flow at the wall is characterized by high resolution particle image velocimetry technique. Our results demonstrate that the flow-induced particle-plastron collision shortens the lifetime of the plastron by ~50%. The underlying physics are discussed and a theoretical analysis is conducted to further characterize the mass transfer mechanisms. Nature Publishing Group 2017-01-27 /pmc/articles/PMC5269735/ /pubmed/28128296 http://dx.doi.org/10.1038/srep41448 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Hokmabad, Babak Vajdi Ghaemi, Sina Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity |
title | Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity |
title_full | Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity |
title_fullStr | Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity |
title_full_unstemmed | Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity |
title_short | Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity |
title_sort | effect of flow and particle-plastron collision on the longevity of superhydrophobicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269735/ https://www.ncbi.nlm.nih.gov/pubmed/28128296 http://dx.doi.org/10.1038/srep41448 |
work_keys_str_mv | AT hokmabadbabakvajdi effectofflowandparticleplastroncollisiononthelongevityofsuperhydrophobicity AT ghaemisina effectofflowandparticleplastroncollisiononthelongevityofsuperhydrophobicity |