Cargando…

Incorporating periodic variability in hidden Markov models for animal movement

BACKGROUND: Clustering time-series data into discrete groups can improve prediction and provide insight into the nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group occupancy, or the rates at which individuals move between groups, can obscur...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Michael, Bolker, Benjamin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270370/
https://www.ncbi.nlm.nih.gov/pubmed/28149522
http://dx.doi.org/10.1186/s40462-016-0093-6
Descripción
Sumario:BACKGROUND: Clustering time-series data into discrete groups can improve prediction and provide insight into the nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group occupancy, or the rates at which individuals move between groups, can obscure such signals. We use finite mixture and hidden Markov models (HMMs), two standard clustering techniques, to model long-term hourly movement data from Florida panthers (Puma concolor coryi). Allowing for temporal heterogeneity in transition probabilities, a straightforward but little-used extension of the standard HMM framework, resolves some shortcomings of current models and clarifies the movement patterns of panthers. RESULTS: Simulations and analyses of panther data showed that model misspecification (omitting important sources of variation) can lead to overfitting/overestimating the underlying number of movement states. Models incorporating temporal heterogeneity identify fewer underlying states, and can make out-of-sample predictions that capture observed diurnal and autocorrelated movement patterns exhibited by Florida panthers. CONCLUSION: Incorporating temporal heterogeneity improved goodness of fit and predictive capability as well as reducing the selected number of movement states closer to a biologically interpretable level, although there is further room for improvement here. Our results suggest that incorporating additional structure in statistical models of movement can allow more accurate assessment of appropriate model complexity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40462-016-0093-6) contains supplementary material, which is available to authorized users.