Cargando…
Incorporating periodic variability in hidden Markov models for animal movement
BACKGROUND: Clustering time-series data into discrete groups can improve prediction and provide insight into the nature of underlying, unobservable states of the system. However, temporal variation in probabilities of group occupancy, or the rates at which individuals move between groups, can obscur...
Autores principales: | Li, Michael, Bolker, Benjamin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270370/ https://www.ncbi.nlm.nih.gov/pubmed/28149522 http://dx.doi.org/10.1186/s40462-016-0093-6 |
Ejemplares similares
-
Hidden Markov Models: The Best Models for Forager Movements?
por: Joo, Rocio, et al.
Publicado: (2013) -
A hidden Markov movement model for rapidly identifying behavioral states from animal tracks
por: Whoriskey, Kim, et al.
Publicado: (2017) -
Characterising Eye Movement Events with an Unsupervised Hidden Markov Model
por: Lüken, Malte, et al.
Publicado: (2022) -
Assessment of the performance of hidden Markov models for imputation in animal breeding
por: Whalen, Andrew, et al.
Publicado: (2018) -
Eye movement analysis with hidden Markov models (EMHMM) with co-clustering
por: Hsiao, Janet H., et al.
Publicado: (2021)