Cargando…
Optimal cancer prognosis under network uncertainty
Typically, a vast amount of experience and data is needed to successfully determine cancer prognosis in the face of (1) the inherent stochasticity of cell dynamics, (2) incomplete knowledge of healthy cell regulation, and (3) the inherent uncertain and evolving nature of cancer progression. There is...
Autores principales: | Yousefi, Mohammadmahdi R, Dalton, Lori A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270461/ https://www.ncbi.nlm.nih.gov/pubmed/28194170 http://dx.doi.org/10.1186/s13637-014-0020-3 |
Ejemplares similares
-
On optimal Bayesian classification and risk estimation under multiple classes
por: Dalton, Lori A., et al.
Publicado: (2015) -
Data Requirements for Model-Based Cancer Prognosis Prediction
por: Dalton, Lori A., et al.
Publicado: (2016) -
A comparison study of optimal and suboptimal intervention policies for gene regulatory networks in the presence of uncertainty
por: Yousefi, Mohammadmahdi R, et al.
Publicado: (2014) -
Optimal clustering under uncertainty
por: Dalton, Lori A., et al.
Publicado: (2018) -
Optimization of temporal networks under uncertainty
por: Wiesemann, Wolfram
Publicado: (2012)