Cargando…
Using multi-step proposal distribution for improved MCMC convergence in Bayesian network structure learning
Bayesian networks have become popular for modeling probabilistic relationships between entities. As their structure can also be given a causal interpretation about the studied system, they can be used to learn, for example, regulatory relationships of genes or proteins in biological networks and pat...
Autores principales: | Larjo, Antti, Lähdesmäki, Harri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270512/ https://www.ncbi.nlm.nih.gov/pubmed/28316611 http://dx.doi.org/10.1186/s13637-015-0024-7 |
Ejemplares similares
-
Inference of regulatory networks with a convergence improved MCMC sampler
por: Agostinho, Nilzair B., et al.
Publicado: (2015) -
Discretization and MCMC convergence assessment
por: Robert, Christian
Publicado: (1998) -
Bayesian Inference on Malignant Breast Cancer in Nigeria: A Diagnosis of MCMC Convergence
por: Ogunsakin, Ropo Ebenezer, et al.
Publicado: (2017) -
Likelihood, Bayesian, and mcmc methods in quantitative genetics
por: Sorensen, Daniel, et al.
Publicado: (2002) -
A Neural Network MCMC Sampler That Maximizes Proposal Entropy
por: Li, Zengyi, et al.
Publicado: (2021)