Cargando…

Gerosuppression by pan-mTOR inhibitors

Rapamycin slows organismal aging and delays age-related diseases, extending lifespan in numerous species. In cells, rapamycin and other rapalogs such as everolimus suppress geroconversion from quiescence to senescence. Rapamycin inhibits some, but not all, activities of mTOR. Recently we and others...

Descripción completa

Detalles Bibliográficos
Autores principales: Leontieva, Olga V., Blagosklonny, Mikhail V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270685/
https://www.ncbi.nlm.nih.gov/pubmed/28077803
http://dx.doi.org/10.18632/aging.101155
_version_ 1782501211963916288
author Leontieva, Olga V.
Blagosklonny, Mikhail V.
author_facet Leontieva, Olga V.
Blagosklonny, Mikhail V.
author_sort Leontieva, Olga V.
collection PubMed
description Rapamycin slows organismal aging and delays age-related diseases, extending lifespan in numerous species. In cells, rapamycin and other rapalogs such as everolimus suppress geroconversion from quiescence to senescence. Rapamycin inhibits some, but not all, activities of mTOR. Recently we and others demonstrated that pan-mTOR inhibitors, known also as dual mTORC1/C2 inhibitors, suppress senescent phenotype. As a continuation of these studies, here we investigated in detail a panel of pan-mTOR inhibitors, to determine their optimal gerosuppressive concentrations. During geroconversion, cells become hypertrophic and flat, accumulate lysosomes (SA-beta-Gal staining) and lipids (Oil Red staining) and lose their re-proliferative potential (RPP). We determined optimal gerosuppressive concentrations: Torin1 (30 nM), Torin 2 (30 nM), AZD8055 (100 nM), PP242 (300 nM), both KU-006379 and GSK1059615 (1000 nM). These agents decreased senescence-associated hypertrophy with IC50s: 20, 18, 15, 200 and 400 nM, respectively. Preservation of RPP by pan-mTOR inhibitors was associated with inhibition of the pS6K/pS6 axis. Inhibition of rapamycin-insensitive functions of mTOR further contributed to anti-hypertrophic and cytostatic effects. Torin 1 and PP242 were more “rapamycin-like” than Torin 2 and AZD8055. Pan-mTOR inhibitors were superior to rapamycin in suppressing hypertrophy, senescent morphology, Oil Red O staining and in increasing so-called “chronological life span (CLS)”. We suggest that, at doses lower than anti-cancer concentrations, pan-mTOR inhibitors can be developed as anti-aging drugs.
format Online
Article
Text
id pubmed-5270685
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-52706852017-01-27 Gerosuppression by pan-mTOR inhibitors Leontieva, Olga V. Blagosklonny, Mikhail V. Aging (Albany NY) Research Paper Rapamycin slows organismal aging and delays age-related diseases, extending lifespan in numerous species. In cells, rapamycin and other rapalogs such as everolimus suppress geroconversion from quiescence to senescence. Rapamycin inhibits some, but not all, activities of mTOR. Recently we and others demonstrated that pan-mTOR inhibitors, known also as dual mTORC1/C2 inhibitors, suppress senescent phenotype. As a continuation of these studies, here we investigated in detail a panel of pan-mTOR inhibitors, to determine their optimal gerosuppressive concentrations. During geroconversion, cells become hypertrophic and flat, accumulate lysosomes (SA-beta-Gal staining) and lipids (Oil Red staining) and lose their re-proliferative potential (RPP). We determined optimal gerosuppressive concentrations: Torin1 (30 nM), Torin 2 (30 nM), AZD8055 (100 nM), PP242 (300 nM), both KU-006379 and GSK1059615 (1000 nM). These agents decreased senescence-associated hypertrophy with IC50s: 20, 18, 15, 200 and 400 nM, respectively. Preservation of RPP by pan-mTOR inhibitors was associated with inhibition of the pS6K/pS6 axis. Inhibition of rapamycin-insensitive functions of mTOR further contributed to anti-hypertrophic and cytostatic effects. Torin 1 and PP242 were more “rapamycin-like” than Torin 2 and AZD8055. Pan-mTOR inhibitors were superior to rapamycin in suppressing hypertrophy, senescent morphology, Oil Red O staining and in increasing so-called “chronological life span (CLS)”. We suggest that, at doses lower than anti-cancer concentrations, pan-mTOR inhibitors can be developed as anti-aging drugs. Impact Journals LLC 2016-12-30 /pmc/articles/PMC5270685/ /pubmed/28077803 http://dx.doi.org/10.18632/aging.101155 Text en Copyright: © 2016 Leontieva and Blagosklonny http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Research Paper
Leontieva, Olga V.
Blagosklonny, Mikhail V.
Gerosuppression by pan-mTOR inhibitors
title Gerosuppression by pan-mTOR inhibitors
title_full Gerosuppression by pan-mTOR inhibitors
title_fullStr Gerosuppression by pan-mTOR inhibitors
title_full_unstemmed Gerosuppression by pan-mTOR inhibitors
title_short Gerosuppression by pan-mTOR inhibitors
title_sort gerosuppression by pan-mtor inhibitors
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270685/
https://www.ncbi.nlm.nih.gov/pubmed/28077803
http://dx.doi.org/10.18632/aging.101155
work_keys_str_mv AT leontievaolgav gerosuppressionbypanmtorinhibitors
AT blagosklonnymikhailv gerosuppressionbypanmtorinhibitors